To further develop the statistical inference problem for heterogeneous treatment effects, this paper builds on Breiman's (2001) random forest tree (RFT)and Wager et al.'s (2018) causal tree to parameterize the nonparametric problem using the excellent statistical properties of classical OLS and the division of local linear intervals based on covariate quantile points, while preserving the random forest trees with the advantages of constructible confidence intervals and asymptotic normality properties [Athey and Imbens (2016),Efron (2014),Wager et al.(2014)\citep{wager2014asymptotic}], we propose a decision tree using quantile classification according to fixed rules combined with polynomial estimation of local samples, which we call the quantile local linear causal tree (QLPRT) and forest (QLPRF).


翻译:为进一步发展不同处理效果的统计推断问题,本文件以Breiman(2001年)随机森林树(RFT)和Wager等人(2018年)的因果树为基础,利用古典OLS的极佳统计特性和根据共变量点对当地线性间隔的划分,将非参数问题参数化,同时保留随机森林树木,其优点是可建构信任间隔和无药可循的正常特性[AYES和Imbens ⁇ 、Efron(2014)、Wager等人(2014年)\citep{wager2014-masymptography}],我们提议根据固定规则加上对当地样品的多分子估计,采用定量分类法,即我们称之为四分本地线性线性树(QLPRF)和森林(QLPRF)。

0
下载
关闭预览

相关内容

决策树(Decision Tree)是在已知各种情况发生概率的基础上,通过构成决策树来求取净现值的期望值大于等于零的概率,评价项目风险,判断其可行性的决策分析方法,是直观运用概率分析的一种图解法。由于这种决策分支画成图形很像一棵树的枝干,故称决策树。在机器学习中,决策树是一个预测模型,他代表的是对象属性与对象值之间的一种映射关系。Entropy = 系统的凌乱程度,使用算法ID3, C4.5和C5.0生成树算法使用熵。这一度量是基于信息学理论中熵的概念。 决策树是一种树形结构,其中每个内部节点表示一个属性上的测试,每个分支代表一个测试输出,每个叶节点代表一种类别。 分类树(决策树)是一种十分常用的分类方法。他是一种监管学习,所谓监管学习就是给定一堆样本,每个样本都有一组属性和一个类别,这些类别是事先确定的,那么通过学习得到一个分类器,这个分类器能够对新出现的对象给出正确的分类。这样的机器学习就被称之为监督学习。

知识荟萃

精品入门和进阶教程、论文和代码整理等

更多

查看相关VIP内容、论文、资讯等
专知会员服务
51+阅读 · 2020年12月14日
【干货书】机器学习速查手册,135页pdf
专知会员服务
126+阅读 · 2020年11月20日
专知会员服务
162+阅读 · 2020年1月16日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
已删除
将门创投
5+阅读 · 2019年8月19日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
lightgbm algorithm case of kaggle(上)
R语言中文社区
8+阅读 · 2018年3月20日
Xgboost算法——Kaggle案例
R语言中文社区
13+阅读 · 2018年3月13日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2022年1月30日
Arxiv
15+阅读 · 2021年2月19日
Arxiv
4+阅读 · 2018年1月15日
VIP会员
相关VIP内容
相关资讯
已删除
将门创投
5+阅读 · 2019年8月19日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
lightgbm algorithm case of kaggle(上)
R语言中文社区
8+阅读 · 2018年3月20日
Xgboost算法——Kaggle案例
R语言中文社区
13+阅读 · 2018年3月13日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员