We consider a best arm identification (BAI) problem for stochastic bandits with adversarial corruptions in the fixed-budget setting of $T$ steps. We design a novel randomized algorithm, Probabilistic Sequential Shrinking$(u)$ (PSS$(u)$), which is agnostic to the amount of corruptions. When the amount of corruptions per step (CPS) is below a threshold, PSS$(u)$ identifies the best arm or item with probability tending to $1$ as $T\rightarrow\infty$. Otherwise, the optimality gap of the identified item degrades gracefully with the CPS. We argue that such a bifurcation is necessary. In addition, we show that when the CPS is sufficiently large, no algorithm can achieve a BAI probability tending to $1$ as $T\rightarrow \infty$. In PSS$(u)$, the parameter $u$ serves to balance between the optimality gap and success probability. En route, the injection of randomization is shown to be essential to mitigate the impact of corruptions. Indeed, we show that PSS$(u)$ has a better performance than its deterministic analogue, the Successive Halving (SH) algorithm by Karnin et al. (2013). PSS$(2)$'s performance guarantee matches SH's when there is no corruption. Finally, we identify a term in the exponent of the failure probability of PSS$(u)$ that generalizes the common $H_2$ term for BAI under the fixed-budget setting.


翻译:我们认为,在固定预算($T$)的设置中,对有对抗性腐败的暴徒来说,最好的武器识别(BAI)是最好的武器识别(BAI)问题。我们设计了一种新的随机算法,即概率序列递减(u)美元(PSS$(u),这与腐败的数额是不可知的。当每一步(CPS)的腐败数额低于阈值时,PSS$(u)确定最好的武器或物品的概率为1美元($),或者说很可能是1美元($T\rightarrowle\infty $)。否则,所查明的项目的最佳性差会与CPS相比优优优于概率。我们证明,当CPS(美元)的常规性平价程(PSS)期比稳定性平价程(美元)的准确性能效果要好一些。

0
下载
关闭预览

相关内容

专知会员服务
50+阅读 · 2020年12月14日
Effective.Modern.C++ 中英文版,334页pdf
专知会员服务
67+阅读 · 2020年11月4日
因果图,Causal Graphs,52页ppt
专知会员服务
247+阅读 · 2020年4月19日
“CVPR 2020 接受论文列表 1470篇论文都在这了
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
[DLdigest-8] 每日一道算法
深度学习每日摘要
4+阅读 · 2017年11月2日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Best Arm Identification in Graphical Bilinear Bandits
Arxiv
0+阅读 · 2020年12月14日
Arxiv
0+阅读 · 2020年12月13日
The Base Measure Problem and its Solution
Arxiv
0+阅读 · 2020年12月10日
VIP会员
相关资讯
“CVPR 2020 接受论文列表 1470篇论文都在这了
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
[DLdigest-8] 每日一道算法
深度学习每日摘要
4+阅读 · 2017年11月2日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员