Representing complex 3D objects as simple geometric primitives, known as shape abstraction, is important for geometric modeling, structural analysis, and shape synthesis. In this paper, we propose an unsupervised shape abstraction method to map a point cloud into a compact cuboid representation. We jointly predict cuboid allocation as part segmentation and cuboid shapes and enforce the consistency between the segmentation and shape abstraction for self-learning. For the cuboid abstraction task, we transform the input point cloud into a set of parametric cuboids using a variational auto-encoder network. The segmentation network allocates each point into a cuboid considering the point-cuboid affinity. Without manual annotations of parts in point clouds, we design four novel losses to jointly supervise the two branches in terms of geometric similarity and cuboid compactness. We evaluate our method on multiple shape collections and demonstrate its superiority over existing shape abstraction methods. Moreover, based on our network architecture and learned representations, our approach supports various applications including structured shape generation, shape interpolation, and structural shape clustering.
翻译:将复杂的 3D 对象作为简单的几何原始物体代表, 称为形状抽象, 对几何模型、 结构分析和形状合成很重要 。 在本文中, 我们提出一个不受监督的形状抽象方法, 将点云映射成一个紧凑的幼体表示法 。 我们共同预测幼体分布为部分分形和幼体形状, 并强制进行自我学习的分化和形状抽象的一致性 。 对于幼体抽象任务, 我们使用一个变形自动- coder 网络, 将输入点云转换成一组参数幼体 。 分解网络将每个点分配到幼体中, 考虑到点- 幼体的亲近性 。 没有点云中部件的手工说明, 我们设计了四个新的损失来共同监督两个分支的几何相似性和幼体缩缩缩缩缩缩缩。 我们评估了我们收集多种形状的方法, 并展示其优于现有形状抽象方法 。 此外, 根据我们的网络架构和学习的演示, 我们的方法支持各种应用, 包括结构形状生成、 和结构 和结构 。