In this paper we analyze a virtual element method for the two dimensional elasticity spectral problem allowing small edges. Under this approach, and with the aid of the theory of compact operators, we prove convergence of the proposed VEM and error estimates, where the influence of the Lam\'e constants is presented. We present a series of numerical tests to assess the performance of the method where we analyze the effects of the Poisson ratio on the computation of the order of convergence, together with the effects of the stabilization term on the arising of spurious eigenvalues.
翻译:在本文中,我们分析了允许小边缘的两维弹性光谱问题的虚拟元素方法。 在这种方法下,并在紧凑操作者理论的帮助下,我们证明拟议的VEM和误差估算的趋同性能和误差估算,其中展示了Lam\'e常数的影响。我们提出了一系列数字测试来评估方法的性能,用以分析Poisson比率对计算趋同顺序的影响,以及稳定术语对假冒的egen值的影响。</s>