Deep learning is regarded as a promising solution for reversible steganography. There is an accelerating trend of representing a reversible steo-system by monolithic neural networks, which bypass intermediate operations in traditional pipelines of reversible steganography. This end-to-end paradigm, however, suffers from imperfect reversibility. By contrast, the modular paradigm that incorporates neural networks into modules of traditional pipelines can stably guarantee reversibility with mathematical explainability. Prediction-error modulation is a well-established reversible steganography pipeline for digital images. It consists of a predictive analytics module and a reversible coding module. Given that reversibility is governed independently by the coding module, we narrow our focus to the incorporation of neural networks into the analytics module, which serves the purpose of predicting pixel intensities and a pivotal role in determining capacity and imperceptibility. The objective of this study is to evaluate the impacts of different training configurations upon predictive accuracy of neural networks and provide practical insights. In particular, we investigate how different initialisation strategies for input images may affect the learning process and how different training strategies for dual-layer prediction respond to the problem of distributional shift. Furthermore, we compare steganographic performance of various model architectures with different loss functions.
翻译:深层次学习被视为对可逆剖面学的一种有希望的解决方案。 一种加速的趋势是,单一神经网络代表一种可逆的神经系统,它绕过可逆剖面学的传统管道的中间操作。 然而,这种端到端的范式存在不完全的反向性。 相比之下,将神经网络纳入传统管道模块的模块范式能够以数学解释的方式稳定地保证逆向性。 预测性风动调节是一种为数字图像建立的可逆性剖面学管道。它由预测性分析模块和可逆的编码模块组成。鉴于可逆性分析模块独立地管理着传统管道的中间操作。然而,我们把重点缩小到将神经网络纳入分析模块的不完全反向性。 与此相反,将神经网络纳入传统管道的模块的模块模式模式化模式化模式化模式化能够以数学解释性能和不易辨识度来保证逆性。 本研究的目的是评估不同培训配置对神经网络预测性准确性网络预测性的影响,并提供实际的洞察力。 具体来说,我们通过不同层次的预测性分析,我们如何分析不同的分析对不同性分析结构进行不同的分析,可以影响不同的分析,我们如何研究不同的分析不同的分析,如何影响不同的初步分析,如何研究如何研究不同的分析不同的分析,如何研究如何研究如何研究各种分析各种分析,从而改变我们如何研究。</s>