Quantization is widely employed in both cloud and edge systems to reduce the memory occupation, latency, and energy consumption of deep neural networks. In particular, mixed-precision quantization, i.e., the use of different bit-widths for different portions of the network, has been shown to provide excellent efficiency gains with limited accuracy drops, especially with optimized bit-width assignments determined by automated Neural Architecture Search (NAS) tools. State-of-the-art mixed-precision works layer-wise, i.e., it uses different bit-widths for the weights and activations tensors of each network layer. In this work, we widen the search space, proposing a novel NAS that selects the bit-width of each weight tensor channel independently. This gives the tool the additional flexibility of assigning a higher precision only to the weights associated with the most informative features. Testing on the MLPerf Tiny benchmark suite, we obtain a rich collection of Pareto-optimal models in the accuracy vs model size and accuracy vs energy spaces. When deployed on the MPIC RISC-V edge processor, our networks reduce the memory and energy for inference by up to 63% and 27% respectively compared to a layer-wise approach, for the same accuracy.


翻译:云层和边缘系统广泛采用量化方法,以减少深神经网络的内存性、延缓力和能量消耗,特别是混合精密度量度,即对网络不同部分使用不同比特维度,显示可带来极好的增效,精确度下降有限,特别是以自动神经结构搜索工具(NAS)确定的最佳比特维度任务,从而优化比特维度任务。从层层来看,最先进的混合精度工作状态使用不同比特维度的重量,激活每个网络层的电压。在这项工作中,我们扩大了搜索空间,提出了一个新的NAS,独立选择每个重量维特的比特度。这为工具提供了更大的灵活性,仅对与信息最丰富的特征相关的重量给予更高的精确度。测试了MLPerf 小型精度基准套件,我们获得了大量精度模型的精度模型集,激活了每个网络层的电压。我们扩大了搜索空间,提出了新的NAS,选择了每个重量维特维特维特维度的比重度,同时运用了27PIC网络的精度和精确度,从而将Merview-ricreto-rial-rial-ration-ration-ration-rational-ration 分别用于27Vlation-vical-cal-view-view-vical-vil-viewcal as-vical as-view-viewal as-vil-vil as-vil as-vil-vical-vical-vical-vical-vical-vical-vical-vical-vical-vical-vicl-vical-vical 。

0
下载
关闭预览

相关内容

机器学习系统设计系统评估标准
专知会员服务
25+阅读 · 2021年4月2日
专知会员服务
44+阅读 · 2020年10月31日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年3月17日
Arxiv
0+阅读 · 2023年3月15日
Arxiv
19+阅读 · 2022年10月6日
VIP会员
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员