Solving semiparametric models can be computationally challenging because the dimension of parameter space may grow large with increasing sample size. Classical Newton's method becomes quite slow and unstable with intensive calculation of the large Hessian matrix and its inverse. Iterative methods separately update parameters for finite dimensional component and infinite dimensional component have been developed to speed up single iteration, but they often take more steps until convergence or even sometimes sacrifice estimation precision due to sub-optimal update direction. We propose a computationally efficient implicit profiling algorithm that achieves simultaneously the fast iteration step in iterative methods and the optimal update direction in the Newton's method by profiling out the infinite dimensional component as the function of the finite dimensional component. We devise a first order approximation when the profiling function has no explicit analytical form. We show that our implicit profiling method always solve any local quadratic programming problem in two steps. In two numerical experiments under semiparametric transformation models and GARCH-M models, we demonstrated the computational efficiency and statistical precision of our implicit profiling method.
翻译:解析半参数模型可能会在计算上具有挑战性,因为参数空间的维度可能会随着样本规模的扩大而扩大。 典型牛顿的方法变得相当缓慢和不稳定, 大量计算大赫森矩阵及其反向。 已经开发了循环方法, 分别更新有限维元素和无限维元素的参数, 以加速单一迭代, 但是它们往往会采取更多的步骤, 直至趋同, 甚至有时会由于次优更新方向而牺牲估计精确度。 我们提议一种计算高效的隐含剖面算法, 通过将无限维元素剖析出来作为有限维元素的功能, 从而同时实现迭代方法的快速迭代步骤和牛顿方法的最佳更新方向。 当剖面函数没有明确的分析形式时, 我们设计了第一个排序近似值。 我们显示, 我们的隐含剖面方法总是在两个步骤中解决任何本地的二次方程式问题。 在半参数变换式模型和 GARH- M 模型下的两个数字实验中, 我们展示了我们隐含剖面剖面剖面分析方法的计算效率和统计精确度。