X-ray examination is suitable for screening of gastric cancer. Compared to endoscopy, which can only be performed by doctors, X-ray imaging can also be performed by radiographers, and thus, can treat more patients. However, the diagnostic accuracy of gastric radiographs is as low as 85%. To address this problem, highly accurate and quantitative automated diagnosis using machine learning needs to be performed. This paper proposes a diagnostic support method for detecting gastric cancer sites from X-ray images with high accuracy. The two new technical proposal of the method are (1) stochastic functional gastric image augmentation (sfGAIA), and (2) hard boundary box training (HBBT). The former is a probabilistic enhancement of gastric folds in X-ray images based on medical knowledge, whereas the latter is a recursive retraining technique to reduce false positives. We use 4,724 gastric radiographs of 145 patients in clinical practice and evaluate the cancer detection performance of the method in a patient-based five-group cross-validation. The proposed sfGAIA and HBBT significantly enhance the performance of the EfficientDet-D7 network by 5.9% in terms of the F1-score, and our screening method reaches a practical screening capability for gastric cancer (F1: 57.8%, recall: 90.2%, precision: 42.5%).


翻译:与只能由医生进行的内窥镜检查相比,X光成像也可以由放射师进行,从而可以治疗更多的病人。然而,胃射线的诊断精确度低至85%。为解决这一问题,需要使用机器学习进行高度准确和定量的自动诊断。本文建议采用诊断支持方法,从X光图像中以高度精确的方式检测胃癌现场。该方法的两种新技术提案是:(1) 随机功能性功能性气相图像增强(sfGAIIA)和(2) 硬边界箱培训(HBBT)。前者是根据医学知识对X光图像的胃折进行概率提高,而后者是减少假阳性的循环再培训技术。我们使用4 724个临床临床病人的气学放射图,并评估该方法在基于病人的五组交叉验证中的癌症检测性能。 拟议的SfGAIA和HBBT大大加强了基于医学知识的X光镜像的硬框(HBBT)的概率提高,而后者是减少假阳性的再培训技术。我们用59%的精准性癌症检测能力,59%的FCR1 和5.9%的筛选方法。

0
下载
关闭预览

相关内容

专知会员服务
33+阅读 · 2021年9月16日
边缘机器学习,21页ppt
专知会员服务
83+阅读 · 2021年6月21日
因果图,Causal Graphs,52页ppt
专知会员服务
248+阅读 · 2020年4月19日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
异常检测(Anomaly Detection)综述
极市平台
20+阅读 · 2020年10月24日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
计算机视觉领域顶会CVPR 2018 接受论文列表
Focal Loss for Dense Object Detection
统计学习与视觉计算组
11+阅读 · 2018年3月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
动手写机器学习算法:异常检测 Anomaly Detection
七月在线实验室
11+阅读 · 2017年12月8日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
Arxiv
0+阅读 · 2021年10月15日
Clustered Object Detection in Aerial Images
Arxiv
5+阅读 · 2019年8月27日
VIP会员
相关资讯
异常检测(Anomaly Detection)综述
极市平台
20+阅读 · 2020年10月24日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
计算机视觉领域顶会CVPR 2018 接受论文列表
Focal Loss for Dense Object Detection
统计学习与视觉计算组
11+阅读 · 2018年3月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
动手写机器学习算法:异常检测 Anomaly Detection
七月在线实验室
11+阅读 · 2017年12月8日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
Top
微信扫码咨询专知VIP会员