We propose a novel approach for deep learning-based Multi-View Stereo (MVS). For each pixel in the reference image, our method leverages a deep architecture to search for the corresponding point in the source image directly along the corresponding epipolar line. We denote our method DELS-MVS: Deep Epipolar Line Search Multi-View Stereo. Previous works in deep MVS select a range of interest within the depth space, discretize it, and sample the epipolar line according to the resulting depth values: this can result in an uneven scanning of the epipolar line, hence of the image space. Instead, our method works directly on the epipolar line: this guarantees an even scanning of the image space and avoids both the need to select a depth range of interest, which is often not known a priori and can vary dramatically from scene to scene, and the need for a suitable discretization of the depth space. In fact, our search is iterative, which avoids the building of a cost volume, costly both to store and to process. Finally, our method performs a robust geometry-aware fusion of the estimated depth maps, leveraging a confidence predicted alongside each depth. We test DELS-MVS on the ETH3D, Tanks and Temples and DTU benchmarks and achieve competitive results with respect to state-of-the-art approaches.
翻译:我们提出了一种基于深学习的多视立体的新型方法。 对于参考图像中的每个像素,我们的方法会利用一个深的结构来直接在相近极线上搜索源图像中的相应点。 我们表示我们的方法DELS-MVS:深Epipolar线搜索多视立体立体。 深MVS以前的工作在深度空间中选择一系列兴趣,将其分离,并根据由此产生的深度值对上极线进行抽样抽样:这可能导致对上极线进行不平衡的扫描,从而导致图像空间。相反,我们的方法直接在上极线上工作:这保证了对图像空间进行甚至扫描,并避免了选择深度兴趣深度范围的需要,而这通常不为人们所熟知,而且从现场到场之间差异很大,以及需要对空间的深度进行适当的离散。 事实上,我们的搜索是反复的,这避免了成本量的储存和过程。 最后,我们的方法对上极极线直线线进行精确的地球测量-觉察觉测深度方法,并同时对每深度测测测测测地、测地、测测地、测量和测测深度的地基结果进行。