Deep Convolutional Neural Networks (CNNs), such as Dense Convolutional Networks (DenseNet), have achieved great success for image representation by discovering deep hierarchical information. However, most existing networks simply stacks the convolutional layers and hence failing to fully discover local and global feature information among layers. In this paper, we mainly explore how to enhance the local and global dense feature flow by exploiting hierarchical features fully from all the convolution layers. Technically, we propose an efficient and effective CNN framework, i.e., Fast Dense Residual Network (FDRN), for text recognition. To construct FDRN, we propose a new fast residual dense block (f-RDB) to retain the ability of local feature fusion and local residual learning of original RDB, which can reduce the computing efforts at the same time. After fully learning local residual dense features, we utilize the sum operation and several f-RDBs to define a new block termed global dense block (GDB) by imitating the construction of dense blocks to learn global dense residual features adaptively in a holistic way. Finally, we use two convolution layers to construct a down-sampling block to reduce the global feature size and extract deeper features. Extensive simulations show that FDRN obtains the enhanced recognition results, compared with other related models.
翻译:深革命神经网络(CNNs)等深革命神经网络(Dense Convolution Net)通过发现深层次的等级信息,在图像显示方面取得了巨大成功。然而,大多数现有网络只是堆叠着卷叠层层,因此无法在层间充分发现本地和全球特征信息。在本文件中,我们主要探索如何通过充分利用所有卷发层的等级特征,加强本地和全球密度特征流动。技术上,我们提议建立一个高效和有效的CNN框架,即快速堆积残余网络(FDRN),以进行文本识别。为了建设FDRN,我们提议建立一个新的快速残余密集块(f-RDB),以保留本地特性集成和原始RDB的本地剩余学习能力,这可以同时减少计算工作。在充分学习了本地残余密集特征后,我们利用总操作和几个f-RDBs 来定义一个新的块块,即快速堆积区块(GDB),以适应方式学习全球密度残余特征。最后,我们使用两个更深的堆积层模型,以模拟方式获取升级的FDRD模型,以模拟其他的大小模型,从而获得升级的模型。