Ferrograph image segmentation is of significance for obtaining features of wear particles. However, wear particles are usually overlapped in the form of debris chains, which makes challenges to segment wear debris. An overlapping wear particle segmentation network (OWPSNet) is proposed in this study to segment the overlapped debris chains. The proposed deep learning model includes three parts: a region segmentation network, an edge detection network and a feature refine module. The region segmentation network is an improved U shape network, and it is applied to separate the wear debris form background of ferrograph image. The edge detection network is used to detect the edges of wear particles. Then, the feature refine module combines low-level features and high-level semantic features to obtain the final results. In order to solve the problem of sample imbalance, we proposed a square dice loss function to optimize the model. Finally, extensive experiments have been carried out on a ferrograph image dataset. Results show that the proposed model is capable of separating overlapping wear particles. Moreover, the proposed square dice loss function can improve the segmentation results, especially for the segmentation results of wear particle edge.


翻译:电路图像分解对于获得磨损粒子特性具有重要意义。 但是, 磨损粒子通常以碎片链的形式重叠, 从而给碎片磨损碎片带来挑战。 本研究中提议建立一个重叠磨损粒子分解网络( OPSNet), 以分割重叠的碎片链。 提议的深层学习模型包括三个部分: 区域分解网络、 边缘探测网络和特征精细模块。 区域分解网络是一个改进的 U 形状网络, 用于分离铁质图像的磨损形式背景。 边缘检测网络用来探测磨损粒子的边缘。 然后, 功能精细化模块将低层次的特征和高层次的语义特征结合起来, 以获得最终结果。 为了解决样本不平衡问题, 我们提议了一个平方位损失功能来优化模型。 最后, 在铁面图像数据集上进行了广泛的实验。 结果显示, 拟议的模型能够分离重叠的磨损颗粒。 此外, 拟议的平方冰丧失功能可以改进分解结果, 特别是对于磨损粒边缘的分解结果 。

1
下载
关闭预览

相关内容

Networking:IFIP International Conferences on Networking。 Explanation:国际网络会议。 Publisher:IFIP。 SIT: http://dblp.uni-trier.de/db/conf/networking/index.html
零样本文本分类,Zero-Shot Learning for Text Classification
专知会员服务
96+阅读 · 2020年5月31日
因果图,Causal Graphs,52页ppt
专知会员服务
248+阅读 · 2020年4月19日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
2019年机器学习框架回顾
专知会员服务
36+阅读 · 2019年10月11日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
已删除
将门创投
7+阅读 · 2019年3月28日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
已删除
将门创投
7+阅读 · 2019年3月28日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员