Service robots in the future need to execute abstract instructions such as "fetch the milk from the fridge". To translate such instructions into actionable plans, robots require in-depth background knowledge. With regards to interactions with doors and drawers, robots require articulation models that they can use for state estimation and motion planning. Existing articulation model frameworks take an abstracted approach to model building, which requires additional background knowledge to construct mathematical models for computation. In this paper, we introduce a novel framework that uses symbolic mathematical expressions to model articulated objects. We provide a theoretical description of this framework, and the operations that are supported by its models, and introduce an architecture to exchange our models in robotic applications, making them as flexible as any other environmental observation. To demonstrate the utility of our approach, we employ our practical implementation "Kineverse" for solving common robotics tasks from state estimation and mobile manipulation, and use it further in real-world mobile robot manipulation.
翻译:未来服务机器人需要执行“ 从冰箱中提取牛奶”等抽象指令。 为了将此类指令转化为可操作的计划,机器人需要深入的背景知识。 关于与门和抽屉的互动,机器人需要他们可用于国家估算和运动规划的表达模型。 现有的表达模型框架对模型建设采取抽象的方法,这需要额外的背景知识来构建数学模型进行计算。 在本文件中,我们引入了一个新颖的框架,用符号数学表达方式来构建模型表达表达的物体。 我们对这个框架及其模型所支持的操作进行了理论描述,并引入了在机器人应用中交换模型的架构,使其与其他环境观测一样灵活。为了展示我们的方法的实用性,我们运用了实用的“九维”方法,从国家估算和移动操作中解决通用机器人任务,并在实际世界移动机器人操作中进一步使用它。