Low-rank tensor completion has been widely used in computer vision and machine learning. This paper develops a novel multi-modal core tensor factorization (MCTF) method combined with a tensor low-rankness measure and a better nonconvex relaxation form of this measure (NC-MCTF). The proposed models encode low-rank insights for general tensors provided by Tucker and T-SVD, and thus are expected to simultaneously model spectral low-rankness in multiple orientations and accurately restore the data of intrinsic low-rank structure based on few observed entries. Furthermore, we study the MCTF and NC-MCTF regularization minimization problem, and design an effective block successive upper-bound minimization (BSUM) algorithm to solve them. This efficient solver can extend MCTF to various tasks, such as tensor completion. A series of experiments, including hyperspectral image (HSI), video and MRI completion, confirm the superior performance of the proposed method.


翻译:在计算机视觉和机器学习中广泛使用低声压完成率,本文开发了一种新型的多式核心感应因子化(MCTF)方法,结合一种低声调的低声调测量法和这一措施的更好的非电解放松形式(NC-MCTF)。拟议的模型将塔克和T-SVD提供的普通感应器的低声感知编码为低声调,因此预计将同时在多个方向上模拟光谱低声调,并精确恢复以少数观测到的条目为基础的内在低声层结构的数据。此外,我们研究了MCTF和NC-MTF的标准化最小化问题,并设计了一条有效的区块连续的上限最小化(BSUM)算法来解决这些问题。这个高效的求解器可以将MCTF扩大到多种任务,如多声道完成。一系列实验,包括超光谱图像(HSI)、视频和MRI完成,证实了拟议方法的优异性表现。

0
下载
关闭预览

相关内容

计算机 | 国际会议信息5条
Call4Papers
3+阅读 · 2019年7月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
学术会议 | 知识图谱顶会 ISWC 征稿:Poster/Demo
开放知识图谱
5+阅读 · 2019年4月16日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Query Embedding on Hyper-relational Knowledge Graphs
Arxiv
4+阅读 · 2021年6月17日
Arxiv
5+阅读 · 2021年2月15日
VIP会员
相关VIP内容
相关资讯
计算机 | 国际会议信息5条
Call4Papers
3+阅读 · 2019年7月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
学术会议 | 知识图谱顶会 ISWC 征稿:Poster/Demo
开放知识图谱
5+阅读 · 2019年4月16日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员