BHAM is a freely avaible R pakcage that implments Bayesian hierarchical additive models for high-dimensional clinical and genomic data. The package includes functions that generalized additive model, and Cox additive model with the spike-and-slab LASSO prior. These functions implement scalable and stable algorithms to estimate parameters. BHAM also provides utility functions to construct additive models in high dimensional settings, select optimal models, summarize bi-level variable selection results, and visualize nonlinear effects. The package can facilitate flexible modeling of large-scale molecular data, i.e. detecting susceptible variables and infering disease diagnostic and prognostic. In this article, we describe the models, algorithms and related features implemented in BHAM. The package is freely available via the public GitHub repository https://github.com/boyiguo1/BHAM.
翻译:BHAM是一种自由存在的Rpakcage,它能为高维临床和基因组数据插入贝耶斯等级级添加模型,包件包括通用添加模型的功能,以及以前使用钉杆和悬浮LASSO的Cox添加模型。这些功能可以实施可缩放和稳定的算法来估计参数。BHAM还提供在高维环境中构建添加模型的实用功能,选择最佳模型,总结双级变量选择结果,以及可视化非线性效应。包件可以促进大规模分子数据(即检测易变变量和推断疾病诊断和预测)的灵活建模。我们在文章中描述了在BHAM实施的模型、算法和相关特征。该包件可以通过公共 GitHub 仓库https://github.com/boyeguo1/BHAM免费获取。