Near-field communications present new opportunities over near-field channels, however, the spherical wavefront propagation makes near-field signal processing challenging. In this context, this paper proposes efficient near-field channel estimation methods for wideband MIMO mmWave systems with the aid of extremely large-scale reconfigurable intelligent surfaces (XL-RIS). For the wideband signals reflected by the analog RIS, we characterize their near-field beam squint effect in both angle and distance domains. Based on the mathematical analysis of the near-field beam patterns over all frequencies, a wideband spherical-domain dictionary is constructed by minimizing the coherence of two arbitrary beams. In light of this, we formulate a two-dimensional compressive sensing problem to recover the channel parameter based on the spherical-domain sparsity of mmWave channels. To this end, we present a correlation coefficient-based atom matching method within our proposed multi-frequency parallelizable subspace recovery framework for efficient solutions. Additionally, we propose a two-dimensional oracle estimator as a benchmark and derive its lower bound across all subcarriers. Our findings emphasize the significance of system hyperparameters and the sensing matrix of each subcarrier in determining the accuracy of the estimation. Finally, numerical results show that our proposed method achieves considerable performance compared with the lower bound and has a time complexity linear to the number of RIS elements.
翻译:近场通信为近场信道带来新的机遇,但球形波前传播使得近场信号处理具有挑战性。在此背景下,本文提出了一种针对极大规模可重构智能表面(XL-RIS)辅助的宽带MIMO毫米波系统进行高效近场信道估计方法。针对在模拟RIS上反射的宽带信号,我们分析了其近场波束偏斜效应,包括角度和距离域。基于所有频率上近场波束图案的数学分析,构建了一种宽带球面域字典,通过最小化两个任意波束的相干性来实现。鉴于此,我们提出了一个二维压缩感知问题,以基于毫米波信道的球面域稀疏性恢复信道参数。为此,我们在提出的多频并行子空间恢复框架中提出了一种基于相关系数的原子匹配方法,以实现高效的解决方案。此外,我们还提出了一个二维Oracle估计器作为基准,并在所有子载波中推导出其下界。我们的研究结果强调了系统超参数和每个子载波的感知矩阵在决定估计精度方面的重要性。最后,数值结果表明,与下界相比,我们提出的方法在性能上取得了相当的成绩,并且具有与RIS元素数量线性的时间复杂度。