We introduce an information-maximization approach for the Generalized Category Discovery (GCD) problem. Specifically, we explore a parametric family of loss functions evaluating the mutual information between the features and the labels, and find automatically the one that maximizes the predictive performances. Furthermore, we introduce the Elbow Maximum Centroid-Shift (EMaCS) technique, which estimates the number of classes in the unlabeled set. We report comprehensive experiments, which show that our mutual information-based approach (MIB) is both versatile and highly competitive under various GCD scenarios. The gap between the proposed approach and the existing methods is significant, more so when dealing with fine-grained classification problems. Our code: \url{https://github.com/fchiaroni/Mutual-Information-Based-GCD}.
翻译:我们对一般分类发现(GCD)问题采用了信息最大化方法。 具体地说,我们探索了一种对各种特征和标签之间相互信息进行评估的损失功能的参数组合,并自动找到使预测性能最大化的功能。 此外,我们引入了Elbow Centraid-Shift(EMACS)技术,该技术估算了无标签数据集中的班级数量。我们报告了全面实验,该实验表明,在各种GCD情景下,我们基于信息的相互方法(MIB)既多功能又具有高度竞争力。拟议方法与现有方法之间的差距很大,在处理精细分类问题时尤其如此。 我们的代码:\url{https://github.com/fchiaroni/Mutual-Information-Based-GCD}。