In this article, we propose two numerical methods, the Gaussian Process (GP) method and the Fourier Features (FF) algorithm, to solve mean field games (MFGs). The GP algorithm approximates the solution of a MFG with maximum a posteriori probability estimators of GPs conditioned on the partial differential equation (PDE) system of the MFG at a finite number of sample points. The main bottleneck of the GP method is to compute the inverse of a square gram matrix, whose size is proportional to the number of sample points. To improve the performance, we introduce the FF method, whose insight comes from the recent trend of approximating positive definite kernels with random Fourier features. The FF algorithm seeks approximated solutions in the space generated by sampled Fourier features. In the FF method, the size of the matrix to be inverted depends only on the number of Fourier features selected, which is much less than the size of sample points. Hence, the FF method reduces the precomputation time, saves the memory, and achieves comparable accuracy to the GP method. We give the existence and the convergence proofs for both algorithms. The convergence argument of the GP method does not depend on the Lasry-Lions monotonicity condition, which suggests the potential applications of the GP method to solve MFGs with non-monotone couplings in future work. We show the efficacy of our algorithms through experiments on a stationary MFG with a non-local coupling and on a time-dependent planning problem. We believe that the FF method can also serve as an alternative algorithm to solve general PDEs.


翻译:在本篇文章中,我们提出了两种数字方法,即Gausian进程(GP)法和Fourier地貌算法(FF)算法,以解决平均场游戏。GP算法接近MFG的解决方案,而GP测算法以MFG的局部差分方程(PDE)系统为限定的抽样点为条件。GP方法的主要瓶颈是计算一个平方格矩阵的反向,其大小与抽样点的数量成比例。为了改进性能,我们引入了FF方法,其精度来自最近以随机的Fourier特性接近正确定内核的近似趋势。FF算法在抽样的Fourier特性产生的空间中寻求近似的解决办法。在FF方法中,要倒转的矩阵大小仅取决于所选的Fourier特性的数量,这远远低于抽样点的大小。因此,FF方法降低了非剖析前时间,从而节省了GPMF的精确度, 并且使GFal-G方法具有了未来的精确度。WeG方法也显示了我们G方法的精确性。

0
下载
关闭预览

相关内容

Processing 是一门开源编程语言和与之配套的集成开发环境(IDE)的名称。Processing 在电子艺术和视觉设计社区被用来教授编程基础,并运用于大量的新媒体和互动艺术作品中。
专知会员服务
41+阅读 · 2021年4月2日
专知会员服务
76+阅读 · 2021年3月16日
剑桥大学《数据科学: 原理与实践》课程,附PPT下载
专知会员服务
49+阅读 · 2021年1月20日
专知会员服务
50+阅读 · 2020年12月14日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Faster R-CNN
数据挖掘入门与实战
4+阅读 · 2018年4月20日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Arxiv
5+阅读 · 2018年6月12日
Arxiv
5+阅读 · 2017年12月14日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Faster R-CNN
数据挖掘入门与实战
4+阅读 · 2018年4月20日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Top
微信扫码咨询专知VIP会员