The rnn package provides components for implementing a wide range of Recurrent Neural Networks. It is built withing the framework of the Torch distribution for use with the nn package. The components have evolved from 3 iterations, each adding to the flexibility and capability of the package. All component modules inherit either the AbstractRecurrent or AbstractSequencer classes. Strong unit testing, continued backwards compatibility and access to supporting material are the principles followed during its development. The package is compared against existing implementations of two published papers.


翻译:Rnn 软件包提供实施一系列经常性神经网络的组件,它与火炬分发框架一起建造,与nn 软件包一起使用,从三个迭代演变而来,每个迭代都增加了软件包的灵活性和能力,所有组件模块都继承了摘要或摘要序列类,强大的单位测试、持续的后向兼容性和辅助材料的获取是其开发过程中遵循的原则。该软件包与目前执行两份已出版文件的情况进行了比较。

1
下载
关闭预览

相关内容

RNN:循环神经网络,是深度学习的一种模型。
一份循环神经网络RNNs简明教程,37页ppt
专知会员服务
173+阅读 · 2020年5月6日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
【反馈循环自编码器】FEEDBACK RECURRENT AUTOENCODER
专知会员服务
23+阅读 · 2020年1月28日
开源书:PyTorch深度学习起步
专知会员服务
51+阅读 · 2019年10月11日
TorchSeg:基于pytorch的语义分割算法开源了
极市平台
20+阅读 · 2019年1月28日
Facebook PyText 在 Github 上开源了
AINLP
7+阅读 · 2018年12月14日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
【推荐】用TensorFlow实现LSTM社交对话股市情感分析
机器学习研究会
11+阅读 · 2018年1月14日
Simple Recurrent Unit For Sentence Classification
哈工大SCIR
6+阅读 · 2017年11月29日
【推荐】用Tensorflow理解LSTM
机器学习研究会
36+阅读 · 2017年9月11日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【推荐】(Keras)LSTM多元时序预测教程
机器学习研究会
24+阅读 · 2017年8月14日
【深度学习基础】4. Recurrent Neural Networks
微信AI
16+阅读 · 2017年7月19日
Do RNN and LSTM have Long Memory?
Arxiv
19+阅读 · 2020年6月10日
Arxiv
3+阅读 · 2018年10月25日
Arxiv
5+阅读 · 2018年1月29日
Arxiv
5+阅读 · 2018年1月16日
Arxiv
5+阅读 · 2016年10月24日
VIP会员
相关资讯
TorchSeg:基于pytorch的语义分割算法开源了
极市平台
20+阅读 · 2019年1月28日
Facebook PyText 在 Github 上开源了
AINLP
7+阅读 · 2018年12月14日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
【推荐】用TensorFlow实现LSTM社交对话股市情感分析
机器学习研究会
11+阅读 · 2018年1月14日
Simple Recurrent Unit For Sentence Classification
哈工大SCIR
6+阅读 · 2017年11月29日
【推荐】用Tensorflow理解LSTM
机器学习研究会
36+阅读 · 2017年9月11日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【推荐】(Keras)LSTM多元时序预测教程
机器学习研究会
24+阅读 · 2017年8月14日
【深度学习基础】4. Recurrent Neural Networks
微信AI
16+阅读 · 2017年7月19日
相关论文
Top
微信扫码咨询专知VIP会员