We present two novel coded federated learning (FL) schemes for linear regression that mitigate the effect of straggling devices. The first scheme, CodedPaddedFL, mitigates the effect of straggling devices while retaining the privacy level of conventional FL. Particularly, it combines one-time padding for user data privacy with gradient codes to yield resiliency against straggling devices. To apply one-time padding to real data, our scheme exploits a fixed-point arithmetic representation of the data. For a scenario with 25 devices, CodedPaddedFL achieves a speed-up factor of 6.6 and 9.2 for an accuracy of 95\% and 85\% on the MMIST and Fashion-MNIST datasets, respectively, compared to conventional FL. Furthermore, it yields similar performance in terms of latency compared to a recently proposed scheme by Prakash \emph{et al.} without the shortcoming of additional leakage of private data. The second scheme, CodedSecAgg, provides straggler resiliency and robustness against model inversion attacks and is based on Shamir's secret sharing. CodedSecAgg outperforms state-of-the-art secure aggregation schemes such as LightSecAgg by a speed-up factor of 6.6--14.6, depending on the number of colluding devices, on the MNIST dataset for a scenario with 120 devices, at the expense of a 30\% increase in latency compared to CodedPaddedFL.


翻译:我们提出了两个新颖的编码化联邦学习(FL)计划,用于减轻悬浮装置效应的线性回归。第一个方案是代码化PaddadlFL(CoddPaddplad FlFL),在保持常规FL的隐私水平的同时,减轻悬浮装置的效果,同时保持常规FL的隐私水平。特别是,它将用户数据隐私一次性挂贴板与梯度代码相结合,以便产生对悬浮装置的适应性。为了对真实数据采用一次性挂贴板,我们的计划利用了数据的固定点算术表示。对于有25个装置的假设,编码化PaddPaddlFl(CocodSecdPlock)实现了6.6%和9.2%的加速系数,精确度分别为95 ⁇ 和85 ⁇ 和85 ⁇,与常规Fashont-MNIST数据集组合。此外,它与Prakash emph* eph* al.}拟议计划相比,在不缺私人数据额外渗漏的情况下,我们的计划利用了数据。第二个方案,代码化Scod-Sec-PeAggglex(cal-de-demod)提供了Sec-de-demod sqs sqmal sqmal squistmal squimal desmal) supplemal cod codeal cod cod cod cod cod cod cod code。

0
下载
关闭预览

相关内容

联邦学习(Federated Learning)是一种新兴的人工智能基础技术,在 2016 年由谷歌最先提出,原本用于解决安卓手机终端用户在本地更新模型的问题,其设计目标是在保障大数据交换时的信息安全、保护终端数据和个人数据隐私、保证合法合规的前提下,在多参与方或多计算结点之间开展高效率的机器学习。其中,联邦学习可使用的机器学习算法不局限于神经网络,还包括随机森林等重要算法。联邦学习有望成为下一代人工智能协同算法和协作网络的基础。
【Google】平滑对抗训练,Smooth Adversarial Training
专知会员服务
48+阅读 · 2020年7月4日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
鲁棒机器学习相关文献集
专知
8+阅读 · 2019年8月18日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
已删除
将门创投
5+阅读 · 2019年4月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
carla 体验效果 及代码
CreateAMind
7+阅读 · 2018年2月3日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2022年2月17日
Arxiv
0+阅读 · 2022年2月16日
Arxiv
7+阅读 · 2021年4月30日
Federated Learning for Mobile Keyboard Prediction
Arxiv
5+阅读 · 2018年11月8日
VIP会员
相关VIP内容
相关资讯
鲁棒机器学习相关文献集
专知
8+阅读 · 2019年8月18日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
已删除
将门创投
5+阅读 · 2019年4月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
carla 体验效果 及代码
CreateAMind
7+阅读 · 2018年2月3日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员