Place recognition is the fundamental module that can assist Simultaneous Localization and Mapping (SLAM) in loop-closure detection and re-localization for long-term navigation. The place recognition community has made astonishing progress over the last $20$ years, and this has attracted widespread research interest and application in multiple fields such as computer vision and robotics. However, few methods have shown promising place recognition performance in complex real-world scenarios, where long-term and large-scale appearance changes usually result in failures. Additionally, there is a lack of an integrated framework amongst the state-of-the-art methods that can handle all of the challenges in place recognition, which include appearance changes, viewpoint differences, robustness to unknown areas, and efficiency in real-world applications. In this work, we survey the state-of-the-art methods that target long-term localization and discuss future directions and opportunities. We start by investigating the formulation of place recognition in long-term autonomy and the major challenges in real-world environments. We then review the recent works in place recognition for different sensor modalities and current strategies for dealing with various place recognition challenges. Finally, we review the existing datasets for long-term localization and introduce our datasets and evaluation API for different approaches. This paper can be a tutorial for researchers new to the place recognition community and those who care about long-term robotics autonomy. We also provide our opinion on the frequently asked question in robotics: Do robots need accurate localization for long-term autonomy? A summary of this work and our datasets and evaluation API is publicly available to the robotics community at: https://github.com/MetaSLAM/GPRS.
翻译:定位识别是有助于同步闭合探测和重新定位用于长期导航的基本模块。 定位识别界在过去20美元中取得了惊人的进展,这在计算机视觉和机器人等多个领域引起了广泛的研究兴趣和应用。 然而,在复杂的现实世界情景中,很少有方法显示出有希望的定位表现,长期和大规模外观变化通常会导致失败。 此外,在能够应对现场识别方面所有挑战的最先进方法之间缺乏一个综合框架,其中包括外观变化、观点差异、对未知领域的稳健性以及真实世界应用的效率。 在这项工作中,我们调查针对长期本地化和讨论未来方向和机会的最先进方法。我们首先调查长期自主和真实世界环境中的主要挑战的定位。 然后我们审查最近对不同传感器模式和当前应对不同地方识别挑战的战略的认知和现状。 最后,我们经常审查现有数据定位、长期数据定位、长期数据定位、长期数据定位、长期数据定位、长期数据定位、长期数据定位、长期数据定位、长期数据定位、长期数据定位、长期数据定位、长期数据定位、长期数据定位、长期数据定位、长期数据定位、长期数据定位系统、长期数据定位、长期数据定位、长期数据定位、长期数据定位、长期数据定位、长期数据定位、长期数据定位、长期数据定位、长期数据定位、长期数据定位、长期数据定位、数据定位、数据定位、数据定位、数据定位、数据定位、数据定位、数据定位、数据定位、数据定位、长期数据定位、数据定位、长期评估、长期数据定位、长期评估、长期数据定位、长期评估、长期数据定位、长期数据定位、长期数据定位、长期定位、长期定位、实时数据定位、长期定位、实时数据定位、数据定位、数据定位,以用于数据定位、实时数据定位、长期定位,以用于评估、实时数据定位、实时数据定位、实时数据定位、实时数据定位、实时数据,以进行、实时数据定位、实时数据定位、实时数据定位、实时数据系统,以进行、实时数据定位、实时系统,供数据定位、实时数据定位、实时数据定位、实时数据定位、实时数据定位,供评估、实时数据,供评估、实时数据,供评估,供评估,供评估,供评估,供评估,供评估,供评估,供评估,供评估,供评估。