Generative adversarial networks (GANs) can generate high-quality images from sampled latent codes. Recent works attempt to edit an image by manipulating its underlying latent code, but rarely go beyond the basic task of attribute adjustment. We propose the first method that enables manipulation with multidimensional condition such as keypoints and captions. Specifically, we design an algorithm that searches for a new latent code that satisfies the target condition based on the Surrogate Gradient Field (SGF) induced by an auxiliary mapping network. For quantitative comparison, we propose a metric to evaluate the disentanglement of manipulation methods. Thorough experimental analysis on the facial attribute adjustment task shows that our method outperforms state-of-the-art methods in disentanglement. We further apply our method to tasks of various condition modalities to demonstrate that our method can alter complex image properties such as keypoints and captions.
翻译:生成对抗性网络( GANs) 可以从样本潜在代码中生成高质量的图像。 最近的工作试图通过调控其潜在代码来编辑图像,但很少超出属性调整的基本任务。 我们提出了第一种能够对多个条件( 如关键点和标题) 进行操纵的方法。 具体地说, 我们设计了一种算法, 寻找一种新的潜在代码, 以满足由辅助绘图网络引致的基于代号梯度场( SGF) 的目标条件。 为了进行定量比较, 我们建议了一种衡量标准, 以评价操纵方法的分解。 对面部属性调整任务进行彻底的实验分析显示, 我们的方法在分解时超过了最先进的方法。 我们进一步运用了我们的方法, 以显示我们的方法可以改变复杂的图像属性, 如关键点和标题 。