Motivated by computational aspects of persistent homology for Vietoris-Rips filtrations, we generalize a result of Eliyahu Rips on the contractibility of Vietoris-Rips complexes of geodesic spaces for a suitable parameter depending on the hyperbolicity of the space. We introduce the notion of geodesic defect to extend this result to general metric spaces in a way that is also compatible with the Rips filtration. We further show that for finite tree metrics the Vietoris-Rips complexes collapse to their corresponding subtrees. We relate our result to modern computational methods by showing that these collapses are induced by the apparent pairs gradient, which is used as an algorithmic optimization in Ripser, explaining its particularly strong performance on tree-like metric data.
翻译:我们以越南-里普斯过滤法的持久性同质学的计算方面为动力,将Eliyahu Rips裂缝对Vietoris-里普斯大地测量空间综合体的合收性的结果加以概括,视空间的超偏差而定,以适合的参数。我们引入大地测量缺陷的概念,将这一结果扩大到一般的公制空间,其方式也与裂缝过滤法相容。我们进一步显示,对于有限的树度而言,Viatoris-里普斯综合体与相应的亚树崩溃有关。我们将我们的结果与现代计算方法联系起来,通过显示这些崩溃是由显眼的两对梯度引起的,该梯度被用作开普斯的算法优化,解释了其在树类指标数据上的特别强的性能。