We study the algorithmic complexity of computing persistent homology of a randomly chosen filtration. Specifically, we prove upper bounds for the average fill-up (number of non-zero entries) of the boundary matrix on Erd\"os-R\'enyi and Vietoris-Rips filtrations after matrix reduction. Our bounds show that, in both cases, the reduced matrix is expected to be significantly sparser than what the general worst-case predicts. Our method is based on previous results on the expected first Betti numbers of corresponding complexes. We establish a link between these results to the fill-up of the boundary matrix. Our bound for Vietoris-Rips complexes is asymptotically tight up to logarithmic factors. We also provide an Erd\"os-R\'enyi filtration realising the worst-case.
翻译:我们研究了计算随机选择过滤的持久性同质的算法复杂性。 具体地说, 我们证明Erd\"os- R\' enyi 和越南- Rips- Rips 过滤后的边界矩阵平均填充量( 非零条目数)的上限。 我们的界限显示, 在这两种情况下, 减少的矩阵预计比一般最坏情况预测的要少得多。 我们的方法是基于预期的相应综合体的第一批Betti数字的先前结果。 我们将这些结果与填充边界矩阵的连接起来。 我们给Vietoris- Rips 复合体的边界矩阵的边框与对数相近。 我们还提供了实现最坏情况的“ os- R\' enyi 过滤” 。