Ship detection in remote sensing images plays a crucial role in various applications and has drawn increasing attention in recent years. However, existing arbitrary-oriented ship detection methods are generally developed on a set of predefined rotated anchor boxes. These predefined boxes not only lead to inaccurate angle predictions but also introduce extra hyper-parameters and high computational cost. Moreover, the prior knowledge of ship size has not been fully exploited by existing methods, which hinders the improvement of their detection accuracy. Aiming at solving the above issues, in this paper, we propose a center-head point extraction based detector (named CHPDet) to achieve arbitrary-oriented ship detection in remote sensing images. Our CHPDet formulates arbitrary-oriented ships as rotated boxes with head points which are used to determine the direction. And rotated Gaussian kernel is used to map the annotations into target heatmaps. Keypoint estimation is performed to find the center of ships. Then, the size and head point of the ships are regressed. The orientation-invariant model (OIM) is also used to produce orientation-invariant feature maps. Finally, we use the target size as prior to finetune the results. Moreover, we introduce a new dataset for multi-class arbitrary-oriented ship detection in remote sensing images at a fixed ground sample distance (GSD) which is named FGSD2021. Experimental results on FGSD2021 and two other widely used data sets, i.e., HRSC2016, and UCAS-AOD demonstrate that our CHPDet achieves state-of-the-art performance and can well distinguish between bow and stern. Code and FGSD2021 dataset are available at https://github.com/zf020114/CHPDet.


翻译:遥感图像中的船舶检测在各种应用中发挥着关键作用,近年来引起了越来越多的注意。然而,现有的任意导向船舶检测方法一般是在一套预先定义的旋转锚箱中开发的。这些预定义的框不仅导致角度预测不准确,而且引入了额外的超参数和高计算成本。此外,现有的方法尚未充分利用关于船舶规模的先前知识,这妨碍了其检测准确性的改进。为了解决上述问题,我们在本文件中提议建立一个基于中心点的提取探测器(名为CHPDet),以便在遥感图像中实现任意导向式的船舶检测。我们的CHDet将任意导向型船舶设计成带有用于确定方向的旋转框。这些预定义不仅导致角度预测,而且引入了额外的超超参数和高点计算成本。关键点估计用于寻找船舶中心。然后,船舶的大小和首点2021号被重新侵蚀。在遥感图像中,定向/内值2021 模型(OIM)还用于制作定向定位的船舶定位D型特征图。最后,我们使用任意导向式的GA 将远程数据引入了FGS-D数据。在FSeral sad Seral 和FServeal 上显示了我们之前的远程检测结果。

0
下载
关闭预览

相关内容

专知会员服务
76+阅读 · 2021年3月16日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
MMDetection v2.0 训练自己的数据集
CVer
30+阅读 · 2020年8月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
已删除
将门创投
8+阅读 · 2019年1月30日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】深度学习目标检测概览
机器学习研究会
10+阅读 · 2017年9月1日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
7+阅读 · 2018年3月19日
Arxiv
4+阅读 · 2018年3月19日
VIP会员
相关资讯
MMDetection v2.0 训练自己的数据集
CVer
30+阅读 · 2020年8月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
已删除
将门创投
8+阅读 · 2019年1月30日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】深度学习目标检测概览
机器学习研究会
10+阅读 · 2017年9月1日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员