This report introduces the technical details of the team FuXi-Fresher for LVIS Challenge 2021. Our method focuses on the problem in following two aspects: the long-tail distribution and the segmentation quality of mask and boundary. Based on the advanced HTC instance segmentation algorithm, we connect transformer backbone(Swin-L) through composite connections inspired by CBNetv2 to enhance the baseline results. To alleviate the problem of long-tail distribution, we design a Distribution Balanced method which includes dataset balanced and loss function balaced modules. Further, we use a Mask and Boundary Refinement method composed with mask scoring and refine-mask algorithms to improve the segmentation quality. In addition, we are pleasantly surprised to find that early stopping combined with EMA method can achieve a great improvement. Finally, by using multi-scale testing and increasing the upper limit of the number of objects detected per image, we achieved more than 45.4% boundary AP on the val set of LVIS Challenge 2021. On the test data of LVIS Challenge 2021, we rank 1st and achieve 48.1% AP. Notably, our APr 47.5% is very closed to the APf 48.0%.


翻译:本报告介绍FuXi-FresherLVIS 挑战2021小组的技术细节。我们的方法侧重于以下两个方面的问题:蒙面和边界的长尾分布和分解质量。根据先进的HTC例分化算法,我们通过CBNetv2的复合连接连接变压器主干网(Swin-L)以加强基线结果。为了减轻长尾分布问题,我们设计了一种分配平衡平衡法,其中包括数据集平衡和损耗功能模块。此外,我们用蒙面和边界精细微算法构成的面罩和边界精细化方法来提高分解质量。此外,我们很惊讶地发现,与EMA方法的早期停止结合能够取得很大的改进。最后,通过多尺度测试和增加每个图像所检测对象的上限,我们在LVIS 挑战2021年的val集中实现了超过45.4%的边界AP。关于LVIS挑战2021的测试数据,我们排在1级和48.1%的AP.0至48.1%的APr%已经关闭。

0
下载
关闭预览

相关内容

专知会员服务
50+阅读 · 2021年5月15日
图像分割方法综述
专知会员服务
54+阅读 · 2020年11月22日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【论文笔记】通俗理解少样本文本分类 (Few-Shot Text Classification) (1)
深度学习自然语言处理
7+阅读 · 2020年4月8日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
TorchSeg:基于pytorch的语义分割算法开源了
极市平台
20+阅读 · 2019年1月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
11+阅读 · 2018年3月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Arxiv
8+阅读 · 2021年9月30日
S4Net: Single Stage Salient-Instance Segmentation
Arxiv
10+阅读 · 2019年4月10日
Arxiv
5+阅读 · 2018年5月16日
Arxiv
3+阅读 · 2018年3月5日
VIP会员
相关资讯
【论文笔记】通俗理解少样本文本分类 (Few-Shot Text Classification) (1)
深度学习自然语言处理
7+阅读 · 2020年4月8日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
TorchSeg:基于pytorch的语义分割算法开源了
极市平台
20+阅读 · 2019年1月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
11+阅读 · 2018年3月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Top
微信扫码咨询专知VIP会员