Compared with avid research activities of deep convolutional neural networks (DCNNs) in practice, the study of theoretical behaviors of DCNNs lags heavily behind. In particular, the universal consistency of DCNNs remains open. In this paper, we prove that implementing empirical risk minimization on DCNNs with expansive convolution (with zero-padding) is strongly universally consistent. Motivated by the universal consistency, we conduct a series of experiments to show that without any fully connected layers, DCNNs with expansive convolution perform not worse than the widely used deep neural networks with hybrid structure containing contracting (without zero-padding) convolution layers and several fully connected layers.


翻译:与实际深层进化神经网络(DCNN)的活跃研究活动相比,对DCNN的理论行为的研究远远落后于以往,特别是DCNN的理论行为仍然普遍一致。在本文中,我们证明,在扩展进化(零铺平)的情况下,对DCNN实施将经验风险最小化的做法是十分一致的。 以普遍一致性为动力,我们进行了一系列实验,以证明没有完全相连的层,具有扩展进化的DCNNNP的演化效果并不比广泛使用的含有包租(无零铺设)进化层和若干完全连接层的混合结构的深层神经网络差。

1
下载
关闭预览

相关内容

神经网络(Neural Networks)是世界上三个最古老的神经建模学会的档案期刊:国际神经网络学会(INNS)、欧洲神经网络学会(ENNS)和日本神经网络学会(JNNS)。神经网络提供了一个论坛,以发展和培育一个国际社会的学者和实践者感兴趣的所有方面的神经网络和相关方法的计算智能。神经网络欢迎高质量论文的提交,有助于全面的神经网络研究,从行为和大脑建模,学习算法,通过数学和计算分析,系统的工程和技术应用,大量使用神经网络的概念和技术。这一独特而广泛的范围促进了生物和技术研究之间的思想交流,并有助于促进对生物启发的计算智能感兴趣的跨学科社区的发展。因此,神经网络编委会代表的专家领域包括心理学,神经生物学,计算机科学,工程,数学,物理。该杂志发表文章、信件和评论以及给编辑的信件、社论、时事、软件调查和专利信息。文章发表在五个部分之一:认知科学,神经科学,学习系统,数学和计算分析、工程和应用。 官网地址:http://dblp.uni-trier.de/db/journals/nn/
专知会员服务
60+阅读 · 2020年3月19日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
资源|斯坦福课程:深度学习理论!
全球人工智能
17+阅读 · 2017年11月9日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
Highway Networks For Sentence Classification
哈工大SCIR
4+阅读 · 2017年9月30日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年8月20日
Pointer Graph Networks
Arxiv
7+阅读 · 2020年6月11日
Arxiv
3+阅读 · 2020年4月29日
Arxiv
6+阅读 · 2019年9月25日
Arxiv
3+阅读 · 2018年2月11日
VIP会员
相关VIP内容
专知会员服务
60+阅读 · 2020年3月19日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
资源|斯坦福课程:深度学习理论!
全球人工智能
17+阅读 · 2017年11月9日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
Highway Networks For Sentence Classification
哈工大SCIR
4+阅读 · 2017年9月30日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员