We consider the planar two-center problem for a convex polygon: given a convex polygon in the plane, find two congruent disks of minimum radius whose union contains the polygon. We present an $O(n\log n)$-time algorithm for the two-center problem for a convex polygon, where $n$ is the number of vertices of the polygon. This improves upon the previous best algorithm for the problem.
翻译:我们认为平面多边形的平面两中点问题:如果在平面上有一个正方形多边形,我们就会找到两个最小半径内含多边形的正方圆圆盘。我们用美元(n\log n)来表示一个正方形多边形的两中点问题的平面两中点算法,其中一美元是多边形的顶点数。这比以前的问题最佳算法更好。