Realistic synthetic time series data of sufficient length enables practical applications in time series modeling tasks, such as forecasting, but remains a challenge. In this paper we present PSA-GAN, a generative adversarial network (GAN) that generates long time series samples of high quality using progressive growing of GANs and self-attention. We show that PSA-GAN can be used to reduce the error in two downstream forecasting tasks over baselines that only use real data. We also introduce a Frechet-Inception Distance-like score, Context-FID, assessing the quality of synthetic time series samples. In our downstream tasks, we find that the lowest scoring models correspond to the best-performing ones. Therefore, Context-FID could be a useful tool to develop time series GAN models.
翻译:足够长的现实合成时间序列数据能够实际应用时间序列模型任务,例如预测,但仍然是个挑战。本文介绍PSA-GAN,这是一个基因对抗网络(GAN),它利用不断增长的GANs和自我注意生成长时间序列的高质量样本。我们显示,PSA-GAN可以用来减少两个下游预测任务的错误,这两个下游预测任务只能使用真实数据。我们还引入了一个Frechet-Inception远程等分,即环境-FID,评估合成时间序列样本的质量。在下游任务中,我们发现最低的评分模型与最佳的模型相对应。因此,背景-FID可以成为开发时间序列GAN模型的有用工具。