In recent years, there has been an ever increasing amount of multivariate time series (MTS) data in various domains, typically generated by a large family of sensors such as wearable devices. This has led to the development of novel learning methods on MTS data, with deep learning models dominating the most recent advancements. Prior literature has primarily focused on designing new network architectures for modeling temporal dependencies within MTS. However, a less studied challenge is associated with high dimensionality of MTS data. In this paper, we propose a novel neural component, namely Neural Feature Se-lector (NFS), as an end-2-end solution for feature selection in MTS data. Specifically, NFS is based on decomposed convolution design and includes two modules: firstly each feature stream within MTS is processed by a temporal CNN independently; then an aggregating CNN combines the processed streams to produce input for other downstream networks. We evaluated the proposed NFS model on four real-world MTS datasets and found that it achieves comparable results with state-of-the-art methods while providing the benefit of feature selection. Our paper also highlights the robustness and effectiveness of feature selection with NFS compared to using recent autoencoder-based methods.


翻译:近年来,不同领域多变时间序列(MTS)数据的数量在不断增多,通常由磨损装置等大型传感器组成的大型组合生成。这导致在MTS数据方面开发了创新的学习方法,而深层次的学习模式主导了最近的进步。以前的文献主要侧重于设计新的网络结构,以模拟MTS内的时间依赖。然而,研究较少的挑战与MTS数据的高度维度有关。在本文件中,我们提出了一个新颖的神经元组成部分,即神经地貌感应器(NFS),作为MTS数据特征选择的端端端2的解决方案。具体地说,NFS基于分解的演进设计,包括两个模块:首先,MTFS内部的每个特征流由CN独立处理;然后是CNN综合的CNN将经过加工的流组合起来,以便为其他下游网络提供投入。我们评估了四个真实世界的MTS数据集的拟议NFS模式,发现它在提供地貌选择的惠益的同时,取得了与状态-艺术方法的可比的结果。我们的文件还强调了最近采用与自动选择特征的方法的稳健和效力。

0
下载
关闭预览

相关内容

NFS是一种分布式文件系统协议,最初由Sun Microsystems公司开发,并于1984年发布。[1]其功能旨在允许客户端主机可以像访问本地存储一样通过网络访问服务器端文件。 NFS和其他许多协议一样,是基于开放网络运算远程过程调用(ONC RPC)协议之上的。它是一个开放、标准的RFC协议,任何人或组织都可以依据标准实现它。 >
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
【新书】Python编程基础,669页pdf
专知会员服务
192+阅读 · 2019年10月10日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Hierarchically Structured Meta-learning
CreateAMind
24+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
推荐|深度强化学习聊天机器人(附论文)!
全球人工智能
4+阅读 · 2018年1月30日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
【推荐】图像分类必读开创性论文汇总
机器学习研究会
14+阅读 · 2017年8月15日
Arxiv
20+阅读 · 2021年2月28日
Attention Network Robustification for Person ReID
Arxiv
5+阅读 · 2019年10月15日
Arxiv
12+阅读 · 2019年3月14日
CoCoNet: A Collaborative Convolutional Network
Arxiv
6+阅读 · 2019年1月28日
VIP会员
相关资讯
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Hierarchically Structured Meta-learning
CreateAMind
24+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
推荐|深度强化学习聊天机器人(附论文)!
全球人工智能
4+阅读 · 2018年1月30日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
【推荐】图像分类必读开创性论文汇总
机器学习研究会
14+阅读 · 2017年8月15日
Top
微信扫码咨询专知VIP会员