Thresholding is the most widely used segmentation method in volumetric image processing, and its pointwise nature makes it attractive for the fast handling of large three-dimensional samples. However, global thresholds often do not properly extract components in the presence of artifacts, measurement noise or grayscale value fluctuations. This paper introduces Feature-Adaptive Interactive Thresholding (FAITH), a thresholding technique that incorporates (geometric) features, local processing and interactive user input to overcome these limitations. Given a global threshold suitable for most regions, FAITH uses interactively selected seed voxels to identify critical regions in which that threshold will be adapted locally on the basis of features computed from local environments around these voxels. The combination of domain expert knowledge and a rigorous mathematical model thus enables a very exible way of local thresholding with intuitive user interaction. A qualitative analysis shows that the proposed model is able to overcome limitations typically occuring in plain thresholding while staying efficient enough to also allow the segmentation of big volumes.
翻译:悬浮是体积图像处理中最广泛使用的分解方法,其点性使其对快速处理大型三维样本具有吸引力。然而,全球阈值往往在文物、测量噪音或灰度价值波动的情况下无法适当提取部件。本文介绍了地貌-偏向性互动驱动(FAITH)(FAITH)(FAITH)(FAITH),这是一种包含(几何)特征、本地处理和互动用户投入的临界技术,以克服这些限制。鉴于全球阈值适合大多数区域,FAITH利用互动选择的种子氧化物确定关键区域,这些阈值将根据这些氧化物周围的当地环境所计算的特征在本地调整。域专家知识和严格的数学模型的结合使得本地阈值与直觉用户相互作用能够非常容易地进行。一项定性分析表明,拟议的模型能够克服一般在直线阈值中出现的限制,同时保持足够的效率,允许对大体积进行分解。