In this paper, for any odd prime $p$ and an integer $m\ge 3$, several classes of linear codes with $t$-weight $(t=3,5,7)$ are obtained based on some defining sets, and then their complete weight enumerators are determined explicitly by employing Gauss sums and quadratic character sums. Especially, for $m = 3$, a class of MDS codes with parameters $[p,3,p-2]$ are obtained. Furthermore, some of these codes can be suitable for applications in secret sharing schemes and $s$-sum sets for any odd $s>1$.
翻译:在本文中,对于任何奇特的美元和3美元整数美元,根据某些界定的数据集,获得若干类重量为美元(t=3,5,7美元)的线性代码,然后其完整的重量计数员由使用高斯总和和和四边字符总和来明确确定,特别是,对于美元=3美元,则获得一组参数为$[p3,p-2]的MDS代码,此外,其中一些代码可适用于秘密共享方案的应用,对于任何奇特的1美元,也可适用美元总和。