Change-point detection aims at discovering behavior changes lying behind time sequences data. In this paper, we investigate the case where the data come from an inhomogenous Poisson process or a marked Poisson process. We present an offline multiple change-point detection methodology based on minimum contrast estimator. In particular we explain how to deal with the continuous nature of the process together with the discrete available observations. Besides, we select the appropriate number of regimes through a cross-validation procedure which is really convenient here due to the nature of the Poisson process. Through experiments on simulated and realworld datasets, we show the interest of the proposed method. The proposed method has been implemented in the \texttt{CptPointProcess} R package.
翻译:更改点检测旨在发现时间序列数据背后的行为变化。 在本文中, 我们调查数据来自不相容的 Poisson 进程或有标记的 Poisson 进程的案例。 我们根据最小对比度估测器, 提出了一个离线多点变化点检测方法。 特别是我们解释如何用离散的观测来应对进程的持续性质。 此外, 我们通过交叉校验程序选择适当数量的制度, 由于 Poisson 进程的性质, 这非常方便。 通过模拟和真实世界数据集的实验, 我们显示了拟议方法的兴趣。 拟议的方法已经在\ textt{ CPPPPProcess} R 软件包中实施 。