Distributed calibration based on consensus optimization is a computationally efficient method to calibrate large radio interferometers such as LOFAR and SKA. Calibrating along multiple directions in the sky and removing the bright foreground signal is a crucial step in many science cases in radio interferometry. The residual data contain weak signals of huge scientific interest and of particular concern is the effect of incomplete sky models used in calibration on the residual. In order to study this, we consider the mapping between the input uncalibrated data and the output residual data. We derive an analytical relationship between the input and output probability density functions which can be used to study the performance of calibration.
翻译:基于共识优化的分布式校准是一种计算效率高的方法,用于校准大型无线电干涉仪,如LOFAR和SKA。沿着天空的多个方向进行校准,并去除亮前景信号,是无线电干涉测量中许多科学案例的关键一步。剩余数据中包含极具科学意义和特别令人关切的微弱信号是校准剩余部分时使用的不完全的天空模型的影响。为了研究这一点,我们考虑了输入未经校准的数据与输出残余数据之间的绘图。我们从输入和输出概率密度功能之间得出分析关系,可用于研究校准性能。