QBF solvers implementing the QCDCL paradigm are powerful algorithms that successfully tackle many computationally complex applications. However, our theoretical understanding of the strength and limitations of these QCDCL solvers is very limited. In this paper we suggest to formally model QCDCL solvers as proof systems. We define different policies that can be used for decision heuristics and unit propagation and give rise to a number of sound and complete QBF proof systems (and hence new QCDCL algorithms). With respect to the standard policies used in practical QCDCL solving, we show that the corresponding QCDCL proof system is incomparable (via exponential separations) to Q-resolution, the classical QBF resolution system used in the literature. This is in stark contrast to the propositional setting where CDCL and resolution are known to be p-equivalent. This raises the question what formulas are hard for standard QCDCL, since Q-resolution lower bounds do not necessarily apply to QCDCL as we show here. In answer to this question we prove several lower bounds for QCDCL, including exponential lower bounds for a large class of random QBFs. We also introduce a strengthening of the decision heuristic used in classical QCDCL, which does not necessarily decide variables in order of the prefix, but still allows to learn asserting clauses. We show that with this decision policy, QCDCL can be exponentially faster on some formulas. We further exhibit a QCDCL proof system that is p-equivalent to Q-resolution. In comparison to classical QCDCL, this new QCDCL version adapts both decision and unit propagation policies.


翻译:QBF解算器实现QCDCL范式是成功地处理许多计算复杂应用程序的强大算法。然而,我们对这些QCDCL求解器的强度和局限性的理论理解非常有限。在本文中,我们建议将QCDCL求解器正式建模为证明系统。我们定义了可以用于决策启发式和单元传播的不同策略,从而产生多个QBF证明系统(因此也是新的QCDCL算法)。关于实际QCDCL求解中使用的标准策略,我们展示了相应的QCDCL证明系统在指数分离意义下与文献中使用的经典QBF Resolution系统不可比较。这与命题设置明显不同,其中CDCL和resolution已知是p等价的。这引出了一个问题,即哪些公式对于标准QCDCL来说是困难的,因为我们在此处展示的Q-resolution下限并不一定适用于QCDCL。为回答这个问题,我们证明了许多QCDCL下限,包括大量随机QBF的指数下限。我们还引入了一个加强经典QCDCL中使用的决策启发式的方式,它不一定按前缀顺序决策变量,但仍然允许学习断言子句。我们展示了使用此决策策略,QCDCL在某些公式上可以指数级地更快。我们进一步展示了一个QCDCL证明系统,它与Q-resolution是p等价的。与经典QCDCL相比,这个新的QCDCL版本改变了决策和单元传播策略。

0
下载
关闭预览

相关内容

专知会员服务
11+阅读 · 2021年7月4日
【NeurIPS2020】点针图网络,Pointer Graph Networks
专知会员服务
39+阅读 · 2020年9月27日
7 Papers & Radios | IJCAI 2022杰出论文;苹果2D GAN转3D
机器之心
0+阅读 · 2022年7月31日
已删除
将门创投
12+阅读 · 2019年7月1日
SIGIR2019 接收论文列表
专知
18+阅读 · 2019年4月20日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
14+阅读 · 2022年8月25日
Arxiv
20+阅读 · 2018年1月17日
VIP会员
相关资讯
7 Papers & Radios | IJCAI 2022杰出论文;苹果2D GAN转3D
机器之心
0+阅读 · 2022年7月31日
已删除
将门创投
12+阅读 · 2019年7月1日
SIGIR2019 接收论文列表
专知
18+阅读 · 2019年4月20日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员