项目名称: 铜氧化物超导/锰氧化物铁磁异质结的制备与超导近邻效应研究

项目编号: No.11274311

项目类型: 面上项目

立项/批准年度: 2013

项目学科: 数理科学和化学

项目作者: 鲁文建

作者单位: 中国科学院合肥物质科学研究院

项目金额: 92万元

中文摘要: 超导和铁磁是两种长程的量子序现象,它们具有天然的竞争关系,一般而言很难共存在同一材料体系中。基于薄膜外延的铜氧化物超导/锰氧化物铁磁异质结为这两个长程序的耦合供了一个很好的平台。近年来观察到的一些反常的实验现象,如反超导自旋阀效应、长程近邻效应等,激起了人们对超导与铁磁相互作用的重新认识。本项目拟采用脉冲激光沉积的方法制备具有光滑界面、清晰化学成分的高质量铜氧化物/锰氧化物外延异质结构,以及制备带绝缘势垒层的超导隧道结。通过微结构的表征以及磁、电输运性质的测量系统地研究超导与铁磁的相互作用;采用微分电导谱测量超导隧道结的态密度,研究各种可能的非常规超导配对态。同时,我们将使用不同的超导准粒子输运理论模型计算各种可观测物理量,以期对各种反常的超导近邻效应有完整和深刻的理解。本项目的开展可以为超导自旋电子学器件潜在的应用积累相关的实验数据。

中文关键词: 超导近邻效应;铜氧化物超导体;锰氧化物铁磁体;异质结;

英文摘要: Superconductivity and ferromagnetism are two long-range quantum orders with a natural competitive relationship, and in general are difficult to co-exist in the same material system. The cuprate/manganite epitaxial heterostructures provide a good platform for the coupling of superconductivity and ferromagnetism. Abnormal phenomena observed in recent years, such as reverse superconducting-spin-valve effect, and long-range proximity effect, spark a new understanding of the superconducting and ferromagnetic interactions. In this project, we plan to adopt the method of pulsed laser deposition to prepare the high-quality cuprate/manganite epitaxial heterostructures with a smooth interface and clear chemical composition, as well as the superconducting tunnel junctions with an insulating barrier layer. Through the micro-structure characterization and the measurements of magnetic, electrical transport properties, we systematically study the interaction of superconductivity and ferromagnetism. We use the differential conductance spectra to measure the superconducting density of states of superconducting tunnel junctions, and study all possible unconventional superconducting pairing states. In addition, we use the models of superconducting quasi-particle transport to calculate the observable physical quantities, in order t

英文关键词: Superconducting proximity effect;Cuprate superconductor;Mangnite ferromagnet;Heterostructure;

成为VIP会员查看完整内容
0

相关内容

【经典书】凸优化:算法与复杂度,130页pdf
专知会员服务
80+阅读 · 2021年11月16日
专知会员服务
50+阅读 · 2021年10月16日
专知会员服务
38+阅读 · 2021年6月11日
专知会员服务
15+阅读 · 2021年6月6日
【经典书】数理统计学,142页pdf
专知会员服务
94+阅读 · 2021年3月25日
基于区块链的数据透明化:问题与挑战
专知会员服务
20+阅读 · 2021年3月4日
专知会员服务
28+阅读 · 2020年8月8日
微软发布量子计算最新成果,证实拓扑量子比特的物理机理
微软研究院AI头条
0+阅读 · 2022年3月18日
MIT科学家制造了量子龙卷风
机器之心
0+阅读 · 2022年1月14日
这期Nature封面「雪崩」了!
新智元
0+阅读 · 2021年1月16日
【材料课堂】TEM复杂电子衍射花样的标定原理
材料科学与工程
38+阅读 · 2019年4月12日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年4月20日
Arxiv
0+阅读 · 2022年4月18日
Memory-Gated Recurrent Networks
Arxiv
12+阅读 · 2020年12月24日
小贴士
相关主题
相关VIP内容
相关资讯
微软发布量子计算最新成果,证实拓扑量子比特的物理机理
微软研究院AI头条
0+阅读 · 2022年3月18日
MIT科学家制造了量子龙卷风
机器之心
0+阅读 · 2022年1月14日
这期Nature封面「雪崩」了!
新智元
0+阅读 · 2021年1月16日
【材料课堂】TEM复杂电子衍射花样的标定原理
材料科学与工程
38+阅读 · 2019年4月12日
相关基金
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
微信扫码咨询专知VIP会员