项目名称: 固体的热导率和远红外介电常数的第一原理研究
项目编号: No.51306111
项目类型: 青年科学基金项目
立项/批准年度: 2014
项目学科: 能源与动力工程
项目作者: 鲍华
作者单位: 上海交通大学
项目金额: 26万元
中文摘要: 热导率和发射率是工程热物理研究中最基本的物性参数。近年来随着微电子产业和纳米技术的发展,低维和纳米结构表现出来的优越的物性受到广泛的关注。但是其热物性测量一直相对困难。因此理论和计算的方法对于预测其热物性和研究微纳尺度的热传导和辐射有非常重要的意义,但是目前研究热物性常用的经典玻尔兹曼方程、分子动力学等方法均依赖大量近似和拟合参数,因此准确性也十分有限。本课题针对这一问题,计划建立一套基于第一原理的计算方法,通过密度泛函理论数值求解最基本的薛定谔方程,在不需要任何经验参数的情况下准确的获得材料的晶格热导率和红外波段的介电常数。这种方法将首先被用在体材料上,计算硅和碲化铋的热导率和碳化硅的远红外介电常数,并通过和实验结果的比较,对该方法进行完善。然后将该方法用于研究实验较难测量的二维层状材料,预测其热导率并进一步分析其导热机制。该课题的开展将有望为热物性的理论预测提供一种准确的可靠的方法。
中文关键词: 热导率;远红外介电常数;第一原理;声子;
英文摘要: Thermal conductivity and emissivity are the fundamental input parameters for any thermal physics research. With the recent fast development of microelectronics and nanotechnology, low-dimensional and nano structures attract much research interest. However, it is generally challenging to accurately measure the thermal properties of low-dimensional or nano structures. It is therefore necessary to develop more accurate predictive methods to study the thermal properties and the thermal transport at nanoscale. The commonly used classical Boltzmann transport equation method or molecular dynamics method relies on fitting parameters or empirical interatomic potential, so the accuracy is strongly limited by those parameters. In this project, we will develop a method based on first-principles calculations, which solves the Schrodinger's equation using the density functional theory. The thermal properties will be obtained by the analysis of first-principles results.The method will first be applied to predict the thermal properties of bulk material. The thermal conductivity of silicon and bismuth telluride and the far-infrared dielectric function of silicon carbide will be predicted. By the comparison with experimental data, we will optimize this method to achieve better accuracy. Then this method will be applied to study t
英文关键词: thermal conductivity;far infrared dielectric permittivity;first principles;phonon;