Wireless Capsule Endoscopy is one of the most advanced non-invasive methods for the examination of gastrointestinal tracts. An intelligent computer-aided diagnostic system for detecting gastrointestinal abnormalities like polyp, bleeding, inflammation, etc. is highly exigent in wireless capsule endoscopy image analysis. Abnormalities greatly differ in their shape, size, color, and texture, and some appear to be visually similar to normal regions. This poses a challenge in designing a binary classifier due to intra-class variations. In this study, a hybrid convolutional neural network is proposed for abnormality detection that extracts a rich pool of meaningful features from wireless capsule endoscopy images using a variety of convolution operations. It consists of three parallel convolutional neural networks, each with a distinctive feature learning capability. The first network utilizes depthwise separable convolution, while the second employs cosine normalized convolution operation. A novel meta-feature extraction mechanism is introduced in the third network, to extract patterns from the statistical information drawn over the features generated from the first and second networks and its own previous layer. The network trio effectively handles intra-class variance and efficiently detects gastrointestinal abnormalities. The proposed hybrid convolutional neural network model is trained and tested on two widely used publicly available datasets. The test results demonstrate that the proposed model outperforms six state-of-the-art methods with 97\% and 98\% classification accuracy on KID and Kvasir-Capsule datasets respectively. Cross dataset evaluation results also demonstrate the generalization performance of the proposed model.
翻译:无线胶囊内窥镜是检查胃肠道的最先进的非侵入性方法之一。 智能计算机辅助诊断系统, 用于检测聚变、 出血、 炎症等肠胃异常现象。 在无线胶囊内窥镜图像分析中, 智能计算机辅助诊断系统非常活跃。 异常性在形状、 大小、 颜色和纹理方面差异很大, 有些看起来与正常区域相仿。 由于阶级内部变化, 设计一个二进制分级器是一项挑战。 在这项研究中, 提议建立一个混合的神经神经神经网络, 用于异常性检测, 利用各种变动操作, 提取大量无线囊内肠内镜内反常特征。 它由三种平行的神经神经神经网络网络组成, 每个网络都有独特的特性学习能力。 第一个网络使用深层分解变异, 而第二个网络则使用Coisnalalalal 递增操作。 在第三个网络中引入了一个新的元性提取机制, 提取了从第一和第二进变式网络生成的特征中提取的统计信息的模型和第二进变异性曲线, Kral- 测试了自己的内变现的系统运行数据。 有效处理了公开测试数据 。 。 和前的系统运行中的数据测试系统运行中, 有效测试了两个系统 。