Many modern imaging applications can be modeled as compressed sensing linear inverse problems. When the measurement operator involved in the inverse problem is sufficiently random, denoising Scalable Message Passing (SMP) algorithms have a potential to demonstrate high efficiency in recovering compressed data. One of the key components enabling SMP to achieve fast convergence, stability and predictable dynamics is the Onsager correction that must be updated at each iteration of the algorithm. This correction involves the denoiser's divergence that is traditionally estimated via the Black-Box Monte Carlo (BB-MC) method \cite{MC-divergence}. While the BB-MC method demonstrates satisfying accuracy of estimation, it requires executing the denoiser additional times at each iteration and might lead to a substantial increase in computational cost of the SMP algorithms. In this work we develop two Large System Limit models of the Onsager correction for denoisers operating within SMP algorithms and use these models to propose two practical classes of divergence estimators that require no additional executions of the denoiser and demonstrate similar or superior correction compared to the BB-MC method.


翻译:许多现代成像应用可模拟为压缩遥感线性反向问题。当反问题所涉测量操作员足够随机时,可缩放的可缩放信件传递算法具有显示回收压缩数据的高度效率的潜力。使SMP能够实现快速趋同、稳定性和可预测的动态的关键组成部分之一是“Onssager”校正,这种校正必须在算法的每次迭代中更新。这种校正涉及脱noiser的分歧,这种差异历来通过“Black-Box Monte Carlo”(BB-MC)方法来估算。BB-MC方法虽然显示估算的准确性令人满意,但要求每次迭代执行“解调器”额外时间,并可能导致SMP算法计算成本的大幅上升。在这项工作中,我们开发了两个“Onsger”校正系统大限制模型,用于提出两种实际的差异估测器,不需要对降压器进行额外处决,并显示与B-MC方法相比,相似或更高级校正。

0
下载
关闭预览

相关内容

【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【综述笔记】Graph Neural Networks in Recommender Systems
图与推荐
5+阅读 · 2020年12月8日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
人工智能 | NIPS 2019等国际会议信息8条
Call4Papers
7+阅读 · 2019年3月21日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
VIP会员
相关资讯
【综述笔记】Graph Neural Networks in Recommender Systems
图与推荐
5+阅读 · 2020年12月8日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
人工智能 | NIPS 2019等国际会议信息8条
Call4Papers
7+阅读 · 2019年3月21日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Top
微信扫码咨询专知VIP会员