In recent years we have witnessed an increase in cyber threats and malicious software attacks on different platforms with important consequences to persons and businesses. It has become critical to find automated machine learning techniques to proactively defend against malware. Transformers, a category of attention-based deep learning techniques, have recently shown impressive results in solving different tasks mainly related to the field of Natural Language Processing (NLP). In this paper, we propose the use of a Transformers' architecture to automatically detect malicious software. We propose a model based on BERT (Bidirectional Encoder Representations from Transformers) which performs a static analysis on the source code of Android applications using preprocessed features to characterize existing malware and classify it into different representative malware categories. The obtained results are promising and show the high performance obtained by Transformer-based models for malicious software detection.


翻译:近年来,我们看到对不同平台的网络威胁和恶意软件袭击增加,给个人和企业带来重要后果,发现自动机器学习技术以主动防范恶意软件已经变得至关重要。 以注意力为基础的深层学习技术类别变换器最近在解决主要与自然语言处理领域相关的不同任务方面取得了令人印象深刻的成果。 在本文中,我们提议使用变换器结构自动检测恶意软件。我们提议了一个基于BERT的模型(来自变换器的双向编码表示器),该模型利用预处理的特性来描述现有恶意软件并将其分类为不同的有代表性的恶意软件类别,对 Android应用源代码进行静态分析。获得的结果很有希望,并展示了以变换器为基础的模型在恶意软件检测方面的高性能。

1
下载
关闭预览

相关内容

专知会员服务
34+阅读 · 2020年12月28日
最新《Transformers模型》教程,64页ppt
专知会员服务
312+阅读 · 2020年11月26日
ExBert — 可视化分析Transformer学到的表示
专知会员服务
32+阅读 · 2019年10月16日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【推荐】深度学习目标检测全面综述
机器学习研究会
21+阅读 · 2017年9月13日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Metamorphic Detection of Repackaged Malware
Arxiv
0+阅读 · 2021年4月27日
Arxiv
11+阅读 · 2019年4月15日
Deep Learning for Generic Object Detection: A Survey
Arxiv
13+阅读 · 2018年9月6日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【推荐】深度学习目标检测全面综述
机器学习研究会
21+阅读 · 2017年9月13日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Top
微信扫码咨询专知VIP会员