3D shape generation techniques utilizing deep learning are increasing attention from both computer vision and architectural design. This survey focuses on investigating and comparing the current latest approaches to 3D object generation with deep generative models (DGMs), including Generative Adversarial Networks (GANs), Variational Autoencoders (VAEs), 3D-aware images, and diffusion models. We discuss 187 articles (80.7% of articles published between 2018-2022) to review the field of generated possibilities of architecture in virtual environments, limited to the architecture form. We provide an overview of architectural research, virtual environment, and related technical approaches, followed by a review of recent trends in discrete voxel generation, 3D models generated from 2D images, and conditional parameters. We highlight under-explored issues in 3D generation and parameterized control that is worth further investigation. Moreover, we speculate that four research agendas including data limitation, editability, evaluation metrics, and human-computer interaction are important enablers of ubiquitous interaction with immersive systems in architecture for computer-aided design Our work contributes to researchers' understanding of the current potential and future needs of deep learnings in generating virtual architecture.
翻译:利用深度学习生成的3D形状生成技术受到计算机视觉和建筑设计的越来越多的关注。本综合调查着重探讨和比较当前最新的深度生成模型(DGM)方法中的3D物体生成方法,包括对抗生成网络(GANs),变分自编码器(VAEs),3D感知图像和扩散模型。我们研究了187篇文章(80.7%的文章发表于2018-2022年),以回顾虚拟环境中生成建筑形式的领域。我们提供了建筑研究,虚拟环境以及相关的技术方法的概述,接着是近期离散像素生成,从2D图像生成的3D模型和条件参数的趋势的回顾。我们强调了3D生成和参数化控制中仍需要进一步研究的问题。此外,我们认为,数据限制,可编辑性,评估指标和人机交互等四项研究议程是实现计算机辅助设计中人机互动的重要推手。我们的工作有助于研究人员了解深度学习在生成虚拟建筑方面的当前潜力和未来需求。