A low-dimensional version of our main result is the following `converse' of the Conway-Gordon-Sachs Theorem on intrinsic linking of the graph $K_6$ in 3-space: For any integer $z$ there are 6 points $1,2,3,4,5,6$ in 3-space, of which every two $i,j$ are joint by a polygonal line $ij$, the interior of one polygonal line is disjoint with any other polygonal line, the linking coefficient of any pair disjoint 3-cycles except for $\{123,456\}$ is zero, and for the exceptional pair $\{123,456\}$ is $2z+1$. We prove a higher-dimensional analogue, which is a `converse' of a lemma by Segal-Spie\.z.
翻译:我们主要结果的一个低维版本是Conway-Gordon-Sachs理论的以下“反方”:图形在3个空格中的内在链接为K_6美元:对于任何整数美元为1,2,3,4,5,6,6美元在3个空格中,其中每2美元j美元由多边形线合为1美元,一个多边形线的内部与任何其他多边形线脱钩,任何对子3周期脱节的连接系数为零,除1,23,456美元外,特殊对子的连结系数为2z+1美元。我们证明,一个高维的模拟值是Segal-Spie\z的 Lemma的“反向”。