With a sufficiently fine discretisation, the Lattice Boltzmann Method (LBM) mimics a second order Crank-Nicolson scheme for certain types of balance laws (Farag et al. [2021]). This allows the explicit, highly parallelisable LBM to efficiently solve the fundamental equations of solid mechanics: the conservation of mass, the balance of linear momentum, and constitutive relations. To date, all LBM algorithms for solid simulation - see e.g. Murthy et al. [2017], Escande et al. [2020], Schl\"uter et al. [2021] - have been limited to the small strain case. Furthermore, the typical interpretation of the LBM in the current (Eulerian) configuration is not easily extensible to large strains, as large topological changes complicate the treatment of boundary conditions. In this publication, we propose a large deformation Lattice Boltzmann Method for geometrically and constitutively nonlinear solid mechanics. To facilitate versatile boundary modelling, the algorithm is defined in the reference (Lagrangian) configuration.
翻译:拉蒂切·博尔茨曼法(LBM)以足够精细的分解方式,模仿了某些类型的平衡法(Farag等人,[2021年])的第二顺序Crank-Nicolson法(Crank-Nicolson法),这样就能够使明确、高度平行的LBM有效地解决固体机械的基本方程式:质量的保护、线性动力的平衡和构成关系。到目前为止,所有固体模拟的LBM算法――例如,见Murthy等人,[2017年]、Scande等人,[2020年]、Schl\"uter等人,[2021年]――都局限于小的体压案。此外,当前(Eularian)配置中LBM的典型解释不容易向大菌株延伸,因为巨大的地形变化使边界条件的处理复杂化。在这个出版物中,我们提议用大型的变形Lattice Boltzmann方法来测量和构造非线性非固体机械。为了便利多功能的边界建模,该算法在参考(Lagranngian)配置中定义。