We propose a clustering-based approach for identifying coherent flow structures in continuous dynamical systems. We first treat a particle trajectory over a finite time interval as a high-dimensional data point and then cluster these data from different initial locations into groups. The method then uses the normalized standard deviation or mean absolute deviation to quantify the deformation. Unlike the usual finite-time Lyapunov exponent (FTLE), the proposed algorithm considers the complete traveling history of the particles. We also suggest two extensions of the method. To improve the computational efficiency, we develop an adaptive approach that constructs different subsamples of the whole particle trajectory based on a finite time interval. To start the computation in parallel to the flow trajectory data collection, we also develop an on-the-fly approach to improve the solution as we continue to provide more measurements for the algorithm. The method can efficiently compute the WCVE over a different time interval by modifying the available data points.
翻译:我们建议了一种基于集群的方法,用于在连续动态系统中确定连贯的流体结构。 我们首先将有限时间间隔的粒子轨迹作为高维数据点处理, 然后将这些数据从不同初始位置分组。 然后, 方法将这些数据从不同初始位置分组。 然后, 方法使用标准标准标准偏差或绝对偏差来量化变形。 与通常的有限时间 Lyapunov Exponent (FTLE) 不同, 提议的算法考虑了粒子的完整流动历史。 我们还建议了两种方法的扩展。 为了提高计算效率, 我们开发了一种适应性的方法, 在有限时间间隔的基础上构建整个粒子轨迹的不同子样本。 为了开始与流程轨迹数据收集平行计算, 我们还开发了一种在继续提供更多算法测量时改进解决方案的在飞行上的方法。 这种方法可以通过修改可用的数据点, 有效地在不同的时间间隔内计算 WCVE。