Temporal logic inference is the process of extracting formal descriptions of system behaviors from data in the form of temporal logic formulas. The existing temporal logic inference methods mostly neglect uncertainties in the data, which results in limited applicability of such methods in real-world deployments. In this paper, we first investigate the uncertainties associated with trajectories of a system and represent such uncertainties in the form of interval trajectories. We then propose two uncertainty-aware signal temporal logic (STL) inference approaches to classify the undesired behaviors and desired behaviors of a system. Instead of classifying finitely many trajectories, we classify infinitely many trajectories within the interval trajectories. In the first approach, we incorporate robust semantics of STL formulas with respect to an interval trajectory to quantify the margin at which an STL formula is satisfied or violated by the interval trajectory. The second approach relies on the first learning algorithm and exploits the decision tree to infer STL formulas to classify behaviors of a given system. The proposed approaches also work for non-separable data by optimizing the worst-case robustness in inferring an STL formula. Finally, we evaluate the performance of the proposed algorithms in two case studies, where the proposed algorithms show reductions in the computation time by up to four orders of magnitude in comparison with the sampling-based baseline algorithms (for a dataset with 800 sampled trajectories in total).
翻译:时间逻辑推论是从数据中以时间逻辑公式的形式对系统行为进行正式描述的过程。 现有的时间逻辑推论方法大多忽略了数据中的不确定性,这导致这类方法在现实世界部署中的可适用性有限。 在本文件中, 我们首先调查与系统轨迹相关的不确定性, 并以间距轨迹的形式代表这种不确定性。 然后我们提出两种有不确定性的信号时间逻辑(STL)推论方法, 以对一个系统不理想的行为和期望的行为进行分类。 我们不对有限的许多轨迹进行分类, 而是在间隔轨迹中对无限多轨迹进行分类。 在第一个方法中, 我们首先调查与一个间隔轨迹轨迹相关的STL公式的稳健性定义性, 第二种方法依靠第一个学习算法, 利用决定树来对一个系统的行为进行分类。 提议的在总轨迹中, 将许多轨迹划分为无限的轨迹。 在最后一种方法中, 将STL公式的精确性定算法进行最差的排序。 在最后一种案例研究中, 以最差的公式中, 以最差的轨算法 显示最差的进度 。