The recently developed generalized Fourier-Galerkin method is complemented by a numerical continuation with respect to the kinetic energy, which extends the framework to the investigation of modal interactions resulting in folds of the nonlinear modes. In order to enhance the practicability regarding the investigation of complex large-scale systems, it is proposed to provide analytical gradients and exploit sparsity of the nonlinear part of the governing algebraic equations. A novel reduced order model (ROM) is developed for those regimes where internal resonances are absent. The approach allows for an accurate approximation of the multi-harmonic content of the resonant mode and accounts for the contributions of the off-resonant modes in their linearized forms. The ROM facilitates the efficient analysis of self-excited limit cycle oscillations, frequency response functions and the direct tracing of forced resonances. The ROM is equipped with a large parameter space including parameters associated with linear damping and near-resonant harmonic forcing terms. An important objective of this paper is to demonstrate the broad applicability of the proposed overall methodology. This is achieved by selected numerical examples including finite element models of structures with strongly nonlinear, non-conservative contact constraints.


翻译:最近开发的通用的Fourier-Galerkin方法得到了动能方面一个数字延续方法的补充,该方法将框架扩大到用于调查导致非线性模式折叠的非线性模式相互作用的模型互动调查框架;为了提高调查复杂大型系统的实用性,建议提供分析梯度,利用治理的代数等式的非线性部分的广度;为没有内部共振的系统开发了一个新的降序模型(ROM);该方法允许精确近似共振模式的多调性内容,并记录离解式模式在其线性形式中的贡献;为了提高调查复杂大型系统调查的实用性,建议提供分析梯度,并开发治理的代数等方形的非线性部分;为没有内部共振动的系统开发了一个新的降序模型(ROM);该方法的一个重要目标是显示拟议整体方法的广泛适用性;通过选定的数字性模型,包括非硬性接触模型,实现这一目的。

0
下载
关闭预览

相关内容

专知会员服务
53+阅读 · 2020年9月7日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
专知会员服务
61+阅读 · 2020年3月19日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
93+阅读 · 2019年10月10日
已删除
AI掘金志
7+阅读 · 2019年7月8日
计算机 | CCF推荐期刊专刊信息5条
Call4Papers
3+阅读 · 2019年4月10日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
Arxiv
0+阅读 · 2021年3月3日
VIP会员
相关VIP内容
专知会员服务
53+阅读 · 2020年9月7日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
专知会员服务
61+阅读 · 2020年3月19日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
93+阅读 · 2019年10月10日
相关资讯
已删除
AI掘金志
7+阅读 · 2019年7月8日
计算机 | CCF推荐期刊专刊信息5条
Call4Papers
3+阅读 · 2019年4月10日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
Top
微信扫码咨询专知VIP会员