A temporal graph is a graph whose edges appear only at certain points in time. In these graphs, reachability among the nodes relies on paths that traverse edges in chronological order (temporal paths). Unlike standard paths, these paths are not always composable, thus the reachability relation is intransitive and connected components do not form equivalence classes. We investigate the properties of reachability and connected components in random temporal graphs, using a simple model that consists of permuting uniformly at random the edges of an Erd\"os-R\'enyi graph and interpreting the position in this permutation as presence times. This model was introduced in [Casteigts et al., FOCS 2021], where thresholds for various reachability properties were identified; for example, sharp threshold for temporal connectivity (all-to-all reachability) is $p=3 \log n / n$. We generalize several techniques from the above paper in order to characterize the emergence of a giant connected component, which answers an open question from that paper. The growth of a giant component turns out to be quite different from the static case, where a component of size $n^{2/3}$ emerges at $p_0=1/n$ and subsequently absorbs a constant fraction of all vertices, with this fraction gradually approaching 1. In contrast, in temporal graphs, we show that the size of a giant connected component transitions abruptly from $o(n)$ nodes to $n - o(n)$ nodes at $p = \log n / n$.
翻译:时间图是一个图形, 其边缘仅出现在特定时间点。 在这些图形中, 结点的可达性取决于时间顺序( 时间路径) 的路径。 与标准路径不同, 这些路径并非总可折叠, 因此可实现性关系不具有透明性, 连接组件不构成等值类 。 我们用一个简单的模型来调查随机时间图中的可达性和连接组件的属性。 我们使用一个简单的模型, 由随机的nrd\'os- R\\' enyi 图形组成, 并用来解释此变异中的位置。 这个模型被引入到 [Casteigts 和 al., FOCS 20211, 其中确定了各种可实现性属性的阈值是不易变的, 因此, 时间连通性( 全部可达性) 的阈值为 3\ log n / n. 美元 。 我们从上述纸张中概括了几种技术, 来描述一个巨大的连接组件的出现, 答案来自该纸张。 一个巨值的组件的成长从 1 美元 = 美元 美元 = 美元 递化的递增 递化的 的 的正数 。