We introduce a differentially private method to measure nonlinear correlations between sensitive data hosted across two entities. We provide utility guarantees of our private estimator. Ours is the first such private estimator of nonlinear correlations, to the best of our knowledge within a multi-party setup. The important measure of nonlinear correlation we consider is distance correlation. This work has direct applications to private feature screening, private independence testing, private k-sample tests, private multi-party causal inference and private data synthesis in addition to exploratory data analysis. Code access: A link to publicly access the code is provided in the supplementary file.
翻译:我们引入了一种差别化的私人方法,以衡量由两个实体托管的敏感数据之间的非线性相关性。我们为我们私人估测员提供了公用事业保障。我们是第一个在多党结构中最了解的非线性相关性的私人估计者。我们认为,非线性相关性的重要衡量标准是距离相关性。这项工作直接应用于私人特征筛查、私人独立测试、私人K-sample测试、私人多党因果推断和私人数据合成,此外还有探索性数据分析。代码访问:在补充文件中提供了与公开访问代码的链接。