Markov Chain Monte Carlo (MCMC) algorithms are widely used for stochastic optimization, sampling, and integration of mathematical objective functions, in particular, in the context of Bayesian inverse problems and parameter estimation. For decades, the algorithm of choice in MCMC simulations has been the Metropolis-Hastings (MH) algorithm. An advancement over the traditional MH-MCMC sampler is the Delayed-Rejection Adaptive Metropolis (DRAM). In this paper, we present MatDRAM, a stochastic optimization, sampling, and Monte Carlo integration toolbox in MATLAB which implements a variant of the DRAM algorithm for exploring the mathematical objective functions of arbitrary-dimensions, in particular, the posterior distributions of Bayesian models in data science, Machine Learning, and scientific inference. The design goals of MatDRAM include nearly-full automation of MCMC simulations, user-friendliness, fully-deterministic reproducibility, and the restart functionality of simulations. We also discuss the implementation details of a technique to automatically monitor and ensure the diminishing adaptation of the proposal distribution of the DRAM algorithm and a method of efficiently storing the resulting simulated Markov chains. The MatDRAM library is open-source, MIT-licensed, and permanently located and maintained as part of the ParaMonte library at https://github.com/cdslaborg/paramonte.
翻译:马克夫连锁公司蒙特卡洛(MCMC)的算法被广泛用于数学目标功能的随机优化、取样和整合,特别是在巴伊西亚反问题和参数估计的背景下。几十年来,MCMC模拟中选择的算法一直是数据科学、机器学习和科学推理方面巴伊西亚模型的外表分布。MatDRAM的设计目标包括MC模拟的近乎完全自动化、用户友好、完全确定性再生以及模拟的恢复功能。我们还讨论了DRAM算法的实施细节,以自动监测和储存数据科学、机器学习和科学推理方面的任意重复的数学目标功能,特别是Bayesian模型的后表分配。MatDRAM的设计目标包括M模拟的近乎完全自动化、用户友好、完全确定性再生和蒙特卡洛综合工具箱。我们还讨论了DRAM算法的应用细节,以自动监测和确保数据科学、机器学习和科学推导的MARMAMA的永久版本。MAF-MLMA的M-S-MLA-MLA-S-S-MLAS-MAL-MAR-ML-MAR-MLAD-MLAD-MAR-S-ML-S-ML-MOL-ML-MAR-MARD-MOL-MOL-S-S-S-S-S-ML-ML-ML-S-S-S-M-S-MLML-M-S-S-IAR-S-S-IAR-S-M-M-M-M-M-ML-ML-MAR-ML-S-S-ML-ML-S-ML-ML-MAR-MAR-S-S-S-S-S-S-M-M-S-S-M-M-M-M-M-M-L-L-L-L-L-ML-ML-SAR-ML-L-IAR-ML-S-S-M-L-M-M-M-M-M-S-M-M-S-S-M-M-S-S-S-S-S-M-M-S-IAR-S-S-S-S-S-