Existing question answering systems can only predict answers without explicit reasoning processes, which hinder their explainability and make us overestimate their ability of understanding and reasoning over natural language. In this work, we propose a novel task of reading comprehension, in which a model is required to provide final answers and reasoning processes. To this end, we introduce a formalism for reasoning over unstructured text, namely Text Reasoning Meaning Representation (TRMR). TRMR consists of three phrases, which is expressive enough to characterize the reasoning process to answer reading comprehension questions. We develop an annotation platform to facilitate TRMR's annotation, and release the R3 dataset, a \textbf{R}eading comprehension benchmark \textbf{R}equiring \textbf{R}easoning processes. R3 contains over 60K pairs of question-answer pairs and their TRMRs. Our dataset is available at: \url{http://anonymous}.


翻译:现有的回答问题系统只能预测没有明确推理过程的答案,这妨碍其解释性,使我们高估其对自然语言的理解和推理能力。在这项工作中,我们提议一项新的阅读理解任务,其中需要一个模型来提供最后的答案和推理过程。为此,我们引入了对非结构化文本进行推理的正规主义,即“文字说明说明”(TRMR)。TRMR由三个短语组成,这足以说明推理过程的特点,以解解理解问题。我们开发了一个说明平台,以方便TRMR的注解,并发布R3数据集,一个\ textbf{R}提供理解基准\ textbf{R},要求\ textbf{R}esoning 进程。R3包含超过60K对问答配及其TRMR。我们的数据集可以在以下查阅:\url{http://anonmous}。

0
下载
关闭预览

相关内容

包括微软、CMU、Stanford在内的顶级人工智能专家和学者们正在研究更复杂的任务:让机器像人类一样阅读文本,进而根据对该文本的理解来回答问题。这种阅读理解就像是让计算机来做我们高考英语的阅读理解题。

知识荟萃

精品入门和进阶教程、论文和代码整理等

更多

查看相关VIP内容、论文、资讯等
知识图谱推理,50页ppt,Salesforce首席科学家Richard Socher
专知会员服务
109+阅读 · 2020年6月10日
因果图,Causal Graphs,52页ppt
专知会员服务
248+阅读 · 2020年4月19日
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
30+阅读 · 2019年10月18日
LibRec 精选:从0开始构建RNN网络
LibRec智能推荐
5+阅读 · 2019年5月31日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
LibRec 精选:推荐系统的常用数据集
LibRec智能推荐
17+阅读 · 2019年2月15日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
Arxiv
3+阅读 · 2018年11月29日
Knowledge Based Machine Reading Comprehension
Arxiv
4+阅读 · 2018年9月12日
VIP会员
相关资讯
LibRec 精选:从0开始构建RNN网络
LibRec智能推荐
5+阅读 · 2019年5月31日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
LibRec 精选:推荐系统的常用数据集
LibRec智能推荐
17+阅读 · 2019年2月15日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
Top
微信扫码咨询专知VIP会员