Existing question answering systems can only predict answers without explicit reasoning processes, which hinder their explainability and make us overestimate their ability of understanding and reasoning over natural language. In this work, we propose a novel task of reading comprehension, in which a model is required to provide final answers and reasoning processes. To this end, we introduce a formalism for reasoning over unstructured text, namely Text Reasoning Meaning Representation (TRMR). TRMR consists of three phrases, which is expressive enough to characterize the reasoning process to answer reading comprehension questions. We develop an annotation platform to facilitate TRMR's annotation, and release the R3 dataset, a \textbf{R}eading comprehension benchmark \textbf{R}equiring \textbf{R}easoning processes. R3 contains over 60K pairs of question-answer pairs and their TRMRs. Our dataset is available at: \url{http://anonymous}.
翻译:现有的回答问题系统只能预测没有明确推理过程的答案,这妨碍其解释性,使我们高估其对自然语言的理解和推理能力。在这项工作中,我们提议一项新的阅读理解任务,其中需要一个模型来提供最后的答案和推理过程。为此,我们引入了对非结构化文本进行推理的正规主义,即“文字说明说明”(TRMR)。TRMR由三个短语组成,这足以说明推理过程的特点,以解解理解问题。我们开发了一个说明平台,以方便TRMR的注解,并发布R3数据集,一个\ textbf{R}提供理解基准\ textbf{R},要求\ textbf{R}esoning 进程。R3包含超过60K对问答配及其TRMR。我们的数据集可以在以下查阅:\url{http://anonmous}。