Information access research (and development) sometimes makes use of gender, whether to report on the demographics of participants in a user study, as inputs to personalized results or recommendations, or to make systems gender-fair, amongst other purposes. This work makes a variety of assumptions about gender, however, that are not necessarily aligned with current understandings of what gender is, how it should be encoded, and how a gender variable should be ethically used. In this work, we present a systematic review of papers on information retrieval and recommender systems that mention gender in order to document how gender is currently being used in this field. We find that most papers mentioning gender do not use an explicit gender variable, but most of those that do either focus on contextualizing results of model performance, personalizing a system based on assumptions of user gender, or auditing a model's behavior for fairness or other privacy-related issues. Moreover, most of the papers we review rely on a binary notion of gender, even if they acknowledge that gender cannot be split into two categories. We connect these findings with scholarship on gender theory and recent work on gender in human-computer interaction and natural language processing. We conclude by making recommendations for ethical and well-grounded use of gender in building and researching information access systems.


翻译:信息获取研究(和开发)有时会利用性别,无论是报告用户研究参与者的人口统计,作为对个人化结果或建议的投入,还是使系统具有性别公平性等目的。这项工作对性别作出各种假设,但是,这些假设不一定与目前对什么是性别、如何将性别编码、如何使用性别变数的理解相一致。在这项工作中,我们系统地审查关于信息检索和建议系统的文件,其中提到性别,以便记录该领域目前如何使用性别。我们发现,大多数提到性别的文件没有使用明确的性别变量,但大多数不是侧重于模型业绩结果的背景化、基于用户性别假设的系统个性化、或审计一种模式的公平行为或其他与隐私有关的问题。此外,我们审查的大多数文件都依赖于性别的二进制概念,即使它们承认性别不能分为两类。我们将这些研究结果与性别理论奖学金和最近在建立人体计算机互动和自然语言处理过程中的性别工作联系起来。我们通过利用伦理和性别信息系统来得出获取建议。

0
下载
关闭预览

相关内容

《计算机信息》杂志发表高质量的论文,扩大了运筹学和计算的范围,寻求有关理论、方法、实验、系统和应用方面的原创研究论文、新颖的调查和教程论文,以及描述新的和有用的软件工具的论文。官网链接:https://pubsonline.informs.org/journal/ijoc
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
Artificial Intelligence: Ready to Ride the Wave? BCG 28页PPT
专知会员服务
26+阅读 · 2022年2月20日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Interest-aware Message-Passing GCN for Recommendation
Arxiv
12+阅读 · 2021年2月19日
Arxiv
92+阅读 · 2020年2月28日
Arxiv
23+阅读 · 2018年8月3日
VIP会员
相关资讯
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员